The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The Saccharomyces cerevisiae SPR1 gene encodes a sporulation-specific exo-1,3-beta-glucanase which contributes to ascospore thermoresistance.

A number of genes have been shown to be transcribed specifically during sporulation in Saccharomyces cerevisiae, yet their developmental function is unknown. The SPR1 gene is transcribed during only the late stages of sporulation. We have sequenced the SPR1 gene and found that it has extensive DNA and protein sequence homology to the S. cerevisiae EXG1 gene which encodes an exo-1,3-beta-glucanase expressed during vegetative growth (C. R. Vasquez de Aldana, J. Correa, P. San Segundo, A. Bueno, A. R. Nebrada, E. Mendez, and F. del Ray, Gene 97:173-182, 1991). We show that spr1 mutant cells do not hydrolyze p-nitrophenyl-beta-D-glucoside or laminarin in a whole-cell assay for exo-1,3-beta-glucanases. In addition to the absence of this enzymatic activity, spr1 mutant spores exhibit reduced thermoresistance relative to isogenic wild-type spores. These observations are consistent with the notion that SPR1 encodes a sporulation-specific exo-1,3-beta-glucanase.[1]

References

  1. The Saccharomyces cerevisiae SPR1 gene encodes a sporulation-specific exo-1,3-beta-glucanase which contributes to ascospore thermoresistance. Muthukumar, G., Suhng, S.H., Magee, P.T., Jewell, R.D., Primerano, D.A. J. Bacteriol. (1993) [Pubmed]
 
WikiGenes - Universities