The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Laminarin     (3R,4S,5S,6R)-2- [(2R,3S,4S,5R)-3,5...

Synonyms: SureCN156574, AC1L973H
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Laminaran

 

High impact information on Laminaran

  • To generate a vaccine to protect against a variety of human pathogenic fungi, we conjugated laminarin (Lam), a well-characterized but poorly immunogenic beta-glucan preparation from the brown alga Laminaria digitata, with the diphtheria toxoid CRM197, a carrier protein used in some glyco-conjugate bacterial vaccines [6].
  • We show that laminarin, a beta-1,3 glucan with elicitor activity in tobacco (Nicotiana tabacum), becomes, after chemical sulfation, an inducer of the salicylic acid (SA) signaling pathway in tobacco and Arabidopsis thaliana [7].
  • In tobacco cell suspensions, the oxidative burst induced by the laminarin sulfate PS3 was Ca2+ dependent but partially kinase independent, whereas laminarin triggered a strickly kinase-dependent oxidative burst [7].
  • Family 6 CBMs (CBM6s) are distinct from other CBM families in that these protein modules contain multiple distinct ligand binding sites, a feature that makes CBM6s particularly appropriate receptors for the beta-1,3-glucan laminarin, which displays an extended U-shaped conformation [8].
  • Kappa-carrageenases belong to family 16 of the glycoside hydrolases, which essentially encompasses polysaccharidases specialized in the hydrolysis of the neutral polysaccharides such as agarose, laminarin, lichenan, and xyloglucan [9].
 

Chemical compound and disease context of Laminaran

 

Biological context of Laminaran

  • The beta-1,3-glucan binding protein could only be affinity-precipitated from crayfish plasma by the beta-1,3-glucans laminarin or curdlan (an insoluble beta-1,3-glucan), while mannan or dextran did not bind to the beta-1,3-glucan binding protein [13].
  • IC50 values for inhibition of binding to low and high affinity sites by the most highly sulphated laminarin sulphate (LAM S5; degree of sulphation 2.31) were 12 +/- 8 micrograms/ml and 69 +/- 66 micrograms/ml, respectively [14].
  • However, when they were used together (0.4 mg/ml alpha-mannan and 0.4 mg/ml laminarin), almost complete inhibition of phagocytosis was obtained [15].
  • These effects of laminarin sulfate may have potential clinical applications in diverse situations such as wound healing, angiogenesis, and atherosclerosis [16].
  • Laminarin did not induce cell death [17].
 

Anatomical context of Laminaran

  • Furthermore, the soluble carbohydrate beta-glucan receptor antagonists laminariheptaose and laminarin also substantially reduce the ability of the P. carinii cell wall isolate to stimulate macrophage-inflammatory activation [18].
  • In contrast, a number of beta-glucans were active against zymosan but not EsIgG ingestion with a 75% reduction in the number of monocytes ingesting zymosan occurring with 100 micrograms/ml laminarin, 500 micrograms/ml soluble pachyman, and 900 micrograms/ml of soluble pustulan [19].
  • To evaluate the involvement of LGBP in the prophenoloxidase (proPO) activating system, a polyclonal antibody against LGBP was made and used for the inhibition of phenoloxidase (PO) activity triggered by the beta-1,3-glucan laminarin in the hemocyte lysate of crayfish [20].
  • Characterisation of a laminarin sulphate which inhibits basic fibroblast growth factor binding and endothelial cell proliferation [14].
  • Tritiated glycans (amylose, dextran, laminaran, the insoluble beta-1,3-D-glucan, and agarose) and the p-nitrophenyl-glycopyranoside derivatives were used as substrates to investigate whether the macrophages contained or released glucanases capable of degrading alpha-1,4-D-glucans, alpha-1-6-D-glucans, beta-1,3-D-glucans, and agarose respectively [21].
 

Associations of Laminaran with other chemical compounds

 

Gene context of Laminaran

 

Analytical, diagnostic and therapeutic context of Laminaran

  • The final product contained only IgG by SDS-PAGE and was shown to be specific by its selectively blocking binding of 125I-mAb OEA10 to laminarin [31].
  • Immunospecific rabbit antibodies were produced by immunization with bovine serum albumin-conjugated laminarin [beta (1-->3)-glucan] and affinity chromatography on epoxy-Sepharose-coupled beta (1-->3)-glucans [32].
  • We examined the pharmacokinetics of three water-soluble glucans (glucan phosphate, laminarin, and scleroglucan) after oral administration of 1 mg/kg doses in rats [33].
  • Selected water-soluble, native polysaccharides--such as amylose, laminaran, pullulan--and derivatized polysaccharides--methyl cellulose, hydroxypropyl cellulose, and carboxymethyl amylose sodium salt (CM-Am)--were investigated as chiral selectors in capillary electrophoresis [34].
  • In contrast, laminarin does not interfere with opsonization whereas mannan blocks the process, blocking the binding of a 57 kD plasma component as detected by Western immunoblot [35].

References

  1. Cell surface expression and secretion of heparanase markedly promote tumor angiogenesis and metastasis. Goldshmidt, O., Zcharia, E., Abramovitch, R., Metzger, S., Aingorn, H., Friedmann, Y., Schirrmacher, V., Mitrani, E., Vlodavsky, I. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  2. Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Miao, H.Q., Elkin, M., Aingorn, E., Ishai-Michaeli, R., Stein, C.A., Vlodavsky, I. Int. J. Cancer (1999) [Pubmed]
  3. Nucleotide sequence of a beta-1,3-glucanase isoenzyme IIA gene of Oerskovia xanthineolytica LL G109 (Cellulomonas cellulans) and initial characterization of the recombinant enzyme expressed in Bacillus subtilis. Ferrer, P., Halkier, T., Hedegaard, L., Savva, D., Diers, I., Asenjo, J.A. J. Bacteriol. (1996) [Pubmed]
  4. Differential blocking of coagulation-activating pathways of Limulus amebocyte lysate. Zhang, G.H., Baek, L., Buchardt, O., Koch, C. J. Clin. Microbiol. (1994) [Pubmed]
  5. Laminarinase (beta-glucanase) activity in Bacteroides from the human colon. Salyers, A.A., Palmer, J.K., Wilkins, T.D. Appl. Environ. Microbiol. (1977) [Pubmed]
  6. A novel glyco-conjugate vaccine against fungal pathogens. Torosantucci, A., Bromuro, C., Chiani, P., De Bernardis, F., Berti, F., Galli, C., Norelli, F., Bellucci, C., Polonelli, L., Costantino, P., Rappuoli, R., Cassone, A. J. Exp. Med. (2005) [Pubmed]
  7. Beta-1,3 glucan sulfate, but not beta-1,3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis. Ménard, R., Alban, S., de Ruffray, P., Jamois, F., Franz, G., Fritig, B., Yvin, J.C., Kauffmann, S. Plant Cell (2004) [Pubmed]
  8. Family 6 carbohydrate binding modules recognize the non-reducing end of beta-1,3-linked glucans by presenting a unique ligand binding surface. van Bueren, A.L., Morland, C., Gilbert, H.J., Boraston, A.B. J. Biol. Chem. (2005) [Pubmed]
  9. The iota-carrageenase of Alteromonas fortis. A beta-helix fold-containing enzyme for the degradation of a highly polyanionic polysaccharide. Michel, G., Chantalat, L., Fanchon, E., Henrissat, B., Kloareg, B., Dideberg, O. J. Biol. Chem. (2001) [Pubmed]
  10. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Salyers, A.A., West, S.E., Vercellotti, J.R., Wilkins, T.D. Appl. Environ. Microbiol. (1977) [Pubmed]
  11. Defense and resistance-inducing activities in tobacco of the sulfated beta-1,3 glucan PS3 and its synergistic activities with the unsulfated molecule. Ménard, R., de Ruffray, P., Fritig, B., Yvin, J.C., Kauffmann, S. Plant Cell Physiol. (2005) [Pubmed]
  12. The laminarinase from thermophilic eubacterium Rhodothermus marinus--conformation, stability, and identification of active site carboxylic residues by site-directed mutagenesis. Krah, M., Misselwitz, R., Politz, O., Thomsen, K.K., Welfle, H., Borriss, R. Eur. J. Biochem. (1998) [Pubmed]
  13. Purification and characterization of a beta-1,3-glucan binding protein from plasma of the crayfish Pacifastacus leniusculus. Duvic, B., Söderhäll, K. J. Biol. Chem. (1990) [Pubmed]
  14. Characterisation of a laminarin sulphate which inhibits basic fibroblast growth factor binding and endothelial cell proliferation. Hoffman, R., Paper, D.H., Donaldson, J., Alban, S., Franz, G. J. Cell. Sci. (1995) [Pubmed]
  15. Both mannose and beta-glucan receptors are involved in phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages. Giaimis, J., Lombard, Y., Fonteneau, P., Muller, C.D., Levy, R., Makaya-Kumba, M., Lazdins, J., Poindron, P. J. Leukoc. Biol. (1993) [Pubmed]
  16. Laminarin sulfate mimics the effects of heparin on smooth muscle cell proliferation and basic fibroblast growth factor-receptor binding and mitogenic activity. Miao, H.Q., Ishai-Michaeli, R., Peretz, T., Vlodavsky, I. J. Cell. Physiol. (1995) [Pubmed]
  17. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Aziz, A., Poinssot, B., Daire, X., Adrian, M., Bézier, A., Lambert, B., Joubert, J.M., Pugin, A. Mol. Plant Microbe Interact. (2003) [Pubmed]
  18. Isolated Pneumocystis carinii cell wall glucan provokes lower respiratory tract inflammatory responses. Vassallo, R., Standing, J.E., Limper, A.H. J. Immunol. (2000) [Pubmed]
  19. A beta-glucan inhibitable receptor on human monocytes: its identity with the phagocytic receptor for particulate activators of the alternative complement pathway. Czop, J.K., Austen, K.F. J. Immunol. (1985) [Pubmed]
  20. A lipopolysaccharide- and beta-1,3-glucan-binding protein from hemocytes of the freshwater crayfish Pacifastacus leniusculus. Purification, characterization, and cDNA cloning. Lee, S.Y., Wang, R., Söderhäll, K. J. Biol. Chem. (2000) [Pubmed]
  21. Lysosomal glycosidases in mouse peritoneal macrophages stimulated in vitro with soluble and insoluble glycans. Bøgwald, J., Johnson, E., Hoffman, J., Seljelid, R. J. Leukoc. Biol. (1984) [Pubmed]
  22. Ole e 9, a major olive pollen allergen is a 1,3-beta-glucanase. Isolation, characterization, amino acid sequence, and tissue specificity. Huecas, S., Villalba, M., Rodríguez, R. J. Biol. Chem. (2001) [Pubmed]
  23. A novel carbohydrate-glycosphingolipid interaction between a beta-(1-3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. Zimmerman, J.W., Lindermuth, J., Fish, P.A., Palace, G.P., Stevenson, T.T., DeMong, D.E. J. Biol. Chem. (1998) [Pubmed]
  24. Detection of beta-glucanase activity on various beta-1,3 and beta-1,4-glucans after native and denaturing polyacrylamide gel electrophoresis. Côté, F., el Ouakfaoui, S., Asselin, A. Electrophoresis (1991) [Pubmed]
  25. Enzyme-linked immunosorbent assay specific for (1-->6) branched, (1-->3)-beta-D-glucan detection in environmental samples. Milton, D.K., Alwis, K.U., Fisette, L., Muilenberg, M. Appl. Environ. Microbiol. (2001) [Pubmed]
  26. The Saccharomyces cerevisiae SPR1 gene encodes a sporulation-specific exo-1,3-beta-glucanase which contributes to ascospore thermoresistance. Muthukumar, G., Suhng, S.H., Magee, P.T., Jewell, R.D., Primerano, D.A. J. Bacteriol. (1993) [Pubmed]
  27. TLR2 modulates inflammation in zymosan-induced arthritis in mice. Frasnelli, M.E., Tarussio, D., Chobaz-Péclat, V., Busso, N., So, A. Arthritis Res. Ther. (2005) [Pubmed]
  28. Functional comparison of the mouse DC-SIGN, SIGNR1, SIGNR3 and Langerin, C-type lectins. Takahara, K., Yashima, Y., Omatsu, Y., Yoshida, H., Kimura, Y., Kang, Y.S., Steinman, R.M., Park, C.G., Inaba, K. Int. Immunol. (2004) [Pubmed]
  29. Molecular and biochemical characterization of an endo-beta-1,3- glucanase of the hyperthermophilic archaeon Pyrococcus furiosus. Gueguen, Y., Voorhorst, W.G., van der Oost, J., de Vos, W.M. J. Biol. Chem. (1997) [Pubmed]
  30. Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor. Schulert, G.S., Allen, L.A. J. Leukoc. Biol. (2006) [Pubmed]
  31. Production and isolation of rabbit anti-idiotypic antibodies directed against the human monocyte receptor for yeast beta-glucans. Czop, J.K., Gurish, M.F., Kadish, J.L. J. Immunol. (1990) [Pubmed]
  32. Measurement of beta(1-->3)-glucans in occupational and home environments with an inhibition enzyme immunoassay. Douwes, J., Doekes, G., Montijn, R., Heederik, D., Brunekreef, B. Appl. Environ. Microbiol. (1996) [Pubmed]
  33. Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. Rice, P.J., Adams, E.L., Ozment-Skelton, T., Gonzalez, A.J., Goldman, M.P., Lockhart, B.E., Barker, L.A., Breuel, K.F., Deponti, W.K., Kalbfleisch, J.H., Ensley, H.E., Brown, G.D., Gordon, S., Williams, D.L. J. Pharmacol. Exp. Ther. (2005) [Pubmed]
  34. Enantioseparation using selected polysaccharides as chiral buffer additives in capillary electrophoresis. Chankvetadze, B., Saito, M., Yashima, E., Okamoto, Y. Journal of chromatography. A. (1997) [Pubmed]
  35. Phagocytosis of yeast by Biomphalaria glabrata: carbohydrate specificity of hemocyte receptors and a plasma opsonin. Fryer, S.E., Hull, C.J., Bayne, C.J. Dev. Comp. Immunol. (1989) [Pubmed]
 
WikiGenes - Universities