The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Human triosephosphate isomerase deficiency resulting from mutation of Phe-240.

Triosephosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketolisomerase [E.C.]) deficiency is an autosomal recessive disorder that typically results in chronic, nonspherocytic hemolytic anemia and in neuromuscular impairment. The molecular basis of this disease was analyzed for one Hungarian family and for two Australian families by localizing the defects in TPI cDNA and by determining how each defect affects TPI gene expression. The Hungarian family is noteworthy in having the first reported case of an individual, A. Jó., who harbors two defective TPI alleles but who does not manifest neuromuscular disabilities. This family was characterized by two mutations that have never been described. One is a missense mutation within codon 240 (TTC [Phe]-->CTC [Leu]), which creates a thermolabile protein, as indicated by the results of enzyme activity assays using cell extracts. This substitution, which changes a phylogenetically conserved amino acid, may affect enzyme activity by disrupting intersubunit contacts or substrate binding, as deduced from enzyme structural studies. The other mutation has yet to be localized but reduces the abundance of TPI mRNA 10-20-fold. Each of the Australian families was characterized by a previously described mutation within codon 104 (GAG [Glu]-->GAC [Asp]), which also results in thermolabile protein.[1]


  1. Human triosephosphate isomerase deficiency resulting from mutation of Phe-240. Chang, M.L., Artymiuk, P.J., Wu, X., Hollán, S., Lammi, A., Maquat, L.E. Am. J. Hum. Genet. (1993) [Pubmed]
WikiGenes - Universities