DNA--protein crosslinks, a biomarker of exposure to formaldehyde--in vitro and in vivo studies.
Formaldehyde (FA) is a widely produced industrial chemical. Sufficient evidence exists to consider FA as an animal carcinogen. In humans the evidence is not conclusive. DNA-protein crosslinks (DPC) may be one of the early lesions in the carcinogenesis process in cells following exposures to carcinogens. It has been shown in in vitro tests that FA can form DPC. We examined the amount of DPC formation in human white blood cells exposed to FA in vitro and in white blood cells taken from 12 workers exposed to FA and eight controls. We found a significant difference (P = 0.03) in the amount of DPC among exposed (mean +/- SD 28 +/- 5%, minimum 21%, maximum 38%) than among the unexposed controls (mean +/- SD 22 +/- 6%, minimum 16%, maximum 32%). Of the 12 exposed workers, four (33%) showed crosslink values above the upper range of controls. We also found a linear relationship between years of exposure and the amount of DPC. We conclude that our data indicate a possible mechanism of FA carcinogenicity in humans and that DPC can be used as a method for biological monitoring of exposure to FA.[1]References
- DNA--protein crosslinks, a biomarker of exposure to formaldehyde--in vitro and in vivo studies. Shaham, J., Bomstein, Y., Meltzer, A., Kaufman, Z., Palma, E., Ribak, J. Carcinogenesis (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg