The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The C-terminal extension of yeast seryl-tRNA synthetase affects stability of the enzyme and its substrate affinity.

Saccharomyces cerevisiae seryl-tRNA synthetase (SerRS) contains a 20-amino acid C-terminal extension, which is not found in prokaryotic SerRS enzymes. A truncated yeast SES1 gene, lacking the 60 base pairs that encode this C-terminal domain, is able to complement a yeast SES1 null allele strain; thus, the C-terminal extension in SerRS is dispensable for the viability of the cell. However, the removal of the C-terminal peptide affects both stability of the enzyme and its affinity for the substrates. The truncation mutant binds tRNA with 3.6-fold higher affinity, while the Km for serine is 4-fold increased relative to the wild-type SerRS. This indicates the importance of the C-terminal extension in maintaining the overall structure of SerRS.[1]

References

  1. The C-terminal extension of yeast seryl-tRNA synthetase affects stability of the enzyme and its substrate affinity. Weygand-Durasević, I., Lenhard, B., Filipić, S., Söll, D. J. Biol. Chem. (1996) [Pubmed]
 
WikiGenes - Universities