The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SARS  -  seryl-tRNA synthetase

Homo sapiens

Synonyms: SERRS, SERS, SerRS, Serine--tRNA ligase, cytoplasmic, Seryl-tRNA synthetase, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SARS


Psychiatry related information on SARS


High impact information on SARS

  • Preventive vaccines are widely acknowledged as the best hope for protection against infectious pathogens such as avian flu, HIV and SARS [9].
  • An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus [10].
  • Germs, governance, and global public health in the wake of SARS [11].
  • This review article analyzes pre-SARS trends in the governance of infectious diseases, examines the impact of the SARS outbreak on these trends, and posits that germ governance is now a criterion of "good governance" in world affairs [11].
  • Comparative analysis of the SARS coronavirus genome: a good start to a long journey [12].

Chemical compound and disease context of SARS


Biological context of SARS

  • The open reading frame (ORF) 7a of the SARS-associated coronavirus (SARS-CoV) encodes a unique type I transmembrane protein of unknown function [18].
  • Because HCoV-NL63 has a low pathogenicity and is able to grow easily in cell culture, this virus can be a powerful tool to study SARS coronavirus pathogenesis [19].
  • SARS, lay epidemiology, and fear [20].
  • Genetic analysis revealed that the spike (S) protein of pcSARS-CoV and huSARS-CoV was subjected to the strongest positive selection pressure during transmission, and there were six amino acid residues within the receptor-binding domain of the S protein being potentially important for SARS progression and tropism [21].
  • Longitudinally profiling neutralizing antibody response to SARS coronavirus with pseudotypes [22].

Anatomical context of SARS

  • METHODS: By using phage display technology, we constructed a naive antibody library from convalescent SARS patient lymphocytes [23].
  • The SARS-CoV S and M protein-targeted Fab or IgG antibodies showed significant neutralizing activities in cytopathic effect (CPE) inhibition neutralization test, these antibodies were able to completely neutralize the SARS virus and protect the Vero cells from CPE after virus infection [23].
  • Routine collection and testing of stool and sputum specimens of probable SARS case-patients may help the early detection of SARS-CoV infection [24].
  • SARS-associated coronavirus replication in cell lines [25].
  • The identification of these membrane-active regions, which are capable of modifying the biophysical properties of phospholipid membranes, supports their direct role in SARS CoV-mediated membrane fusion, as well as facilitating the future development of SARS CoV entry inhibitors [14].

Associations of SARS with chemical compounds

  • A series of 31 patients with probable SARS, diagnosed from WHO criteria, were treated according to a treatment protocol consisting of antibacterials and a combination of ribavirin and methylprednisolone [26].
  • We found that an organic NO donor, S-nitroso-N-acetylpenicillamine, significantly inhibited the replication cycle of SARS CoV in a concentration-dependent manner [27].
  • Isatin compounds as noncovalent SARS coronavirus 3C-like protease inhibitors [28].
  • Also, the debrisoquine MR correlated significantly with the SARS score (rs = 0.685, p < 0.05, N = 10), indicating a relationship between the degree of impaired CYP2D5 activity and the severity of extrapyramidal side effects during neuroleptic treatment [29].
  • Vitamin C and SARS coronavirus [30].

Physical interactions of SARS


Regulatory relationships of SARS


Other interactions of SARS

  • In addition, the SARS N protein-targeted human Fab antibody reacted with the denatured N proteins, whereas none of the S and M protein specific neutralizing antibodies did [23].
  • These studies suggest that combination IFN treatment warrants further investigation as a treatment for SARS [37].
  • Determination of the virus yield indicated highly synergistic anti-SARS-CoV action of the combination suggesting the consideration of ribavirin plus IFN-beta for the treatment of SARS [38].
  • High-dose hydrocortisone reduces expression of the pro-inflammatory chemokines CXCL8 and CXCL10 in SARS coronavirus-infected intestinal cells [39].
  • RESULTS: One polymorphism in the 3'-untranslated region (3'-UTR) of the OAS1 gene was associated with SARS infection [40].

Analytical, diagnostic and therapeutic context of SARS

  • CONCLUSIONS: The demonstration of successful postexposure MAb 201 therapy in an animal model that demonstrates viral replication and associated pulmonary pathological findings suggests that MAb 201 may be useful in the arsenal of tools to combat SARS [1].
  • Intranasal or intramuscular inoculations of BALB/c mice with MVA/S produced serum antibodies that recognized the SARS S in ELISA and neutralized SARS-CoV in vitro [41].
  • Probing the structure of the SARS coronavirus using scanning electron microscopy [42].
  • We developed a set of three real-time reverse transcription-polymerase chain reaction (PCR) assays that amplify three different regions of the SARS-associated coronavirus (SARS-CoV), can be run in parallel or in a single tube, and can detect <10 genome equivalents of SARS-CoV [43].
  • Detection of SARS-associated coronavirus in throat wash and saliva in early diagnosis [44].


  1. Therapy with a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody reduces disease severity and viral burden in golden Syrian hamsters. Roberts, A., Thomas, W.D., Guarner, J., Lamirande, E.W., Babcock, G.J., Greenough, T.C., Vogel, L., Hayes, N., Sullivan, J.L., Zaki, S., Subbarao, K., Ambrosino, D.M. J. Infect. Dis. (2006) [Pubmed]
  2. Pyridine N-oxide derivatives are inhibitory to the human SARS and feline infectious peritonitis coronavirus in cell culture. Balzarini, J., Keyaerts, E., Vijgen, L., Vandermeer, F., Stevens, M., De Clercq, E., Egberink, H., Van Ranst, M. J. Antimicrob. Chemother. (2006) [Pubmed]
  3. Angiotensin-converting enzyme 2 in lung diseases. Kuba, K., Imai, Y., Penninger, J.M. Current opinion in pharmacology. (2006) [Pubmed]
  4. Selective adaptation and human rights to health in China. Jacobs, L., Potter, P.B. Health and human rights (2006) [Pubmed]
  5. Use of human nasal cannulas during bronchoscopy procedures as a simple method for maintaining adequate oxygen saturation in pigtailed macaques (Macaca nemestrina). Thomas, M.J., Flanary, L.R., Brown, B.A., Katze, M.G., Baskin, C.R. J. Am. Assoc. Lab. Anim. Sci. (2006) [Pubmed]
  6. Annulling a dangerous liaison: vaccination strategies against AIDS and tuberculosis. Kaufmann, S.H., McMichael, A.J. Nat. Med. (2005) [Pubmed]
  7. Stigmatization of newly emerging infectious diseases: AIDS and SARS. Des Jarlais, D.C., Galea, S., Tracy, M., Tross, S., Vlahov, D. American journal of public health. (2006) [Pubmed]
  8. Prevalence of psychiatric morbidity and psychological adaptation of the nurses in a structured SARS caring unit during outbreak: A prospective and periodic assessment study in Taiwan. Su, T.P., Lien, T.C., Yang, C.Y., Su, Y.L., Wang, J.H., Tsai, S.L., Yin, J.C. Journal of psychiatric research (2007) [Pubmed]
  9. Vaccines in the public eye. Ritvo, P., Wilson, K., Willms, D., Upshur, R., Goldman, A., Kelvin, D., Rosenthal, K.L., Rinfret, A., Kaul, R., Krahn, M. Nat. Med. (2005) [Pubmed]
  10. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Traggiai, E., Becker, S., Subbarao, K., Kolesnikova, L., Uematsu, Y., Gismondo, M.R., Murphy, B.R., Rappuoli, R., Lanzavecchia, A. Nat. Med. (2004) [Pubmed]
  11. Germs, governance, and global public health in the wake of SARS. Fidler, D.P. J. Clin. Invest. (2004) [Pubmed]
  12. Comparative analysis of the SARS coronavirus genome: a good start to a long journey. Brown, E.G., Tetro, J.A. Lancet (2003) [Pubmed]
  13. Inhibition of feline (FIPV) and human (SARS) coronavirus by semisynthetic derivatives of glycopeptide antibiotics. Balzarini, J., Keyaerts, E., Vijgen, L., Egberink, H., De Clercq, E., Van Ranst, M., Printsevskaya, S.S., Olsufyeva, E.N., Solovieva, S.E., Preobrazhenskaya, M.N. Antiviral Res. (2006) [Pubmed]
  14. Identification of the membrane-active regions of the severe acute respiratory syndrome coronavirus spike membrane glycoprotein using a 16/18-mer peptide scan: implications for the viral fusion mechanism. Guillén, J., Pérez-Berná, A.J., Moreno, M.R., Villalaín, J. J. Virol. (2005) [Pubmed]
  15. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Bisht, H., Roberts, A., Vogel, L., Subbarao, K., Moss, B. Virology (2005) [Pubmed]
  16. An efficient method for the synthesis of peptide aldehyde libraries employed in the discovery of reversible SARS coronavirus main protease (SARS-CoV Mpro) inhibitors. Al-Gharabli, S.I., Shah, S.T., Weik, S., Schmidt, M.F., Mesters, J.R., Kuhn, D., Klebe, G., Hilgenfeld, R., Rademann, J. Chembiochem (2006) [Pubmed]
  17. Lymphopenia and neutrophilia in SARS are related to the prevailing serum cortisol. Panesar, N.S., Lam, C.W., Chan, M.H., Wong, C.K., Sung, J.J. Eur. J. Clin. Invest. (2004) [Pubmed]
  18. Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Nelson, C.A., Pekosz, A., Lee, C.A., Diamond, M.S., Fremont, D.H. Structure (Camb.) (2005) [Pubmed]
  19. Genome structure and transcriptional regulation of human coronavirus NL63. Pyrc, K., Jebbink, M.F., Berkhout, B., van der Hoek, L. Virol. J. (2004) [Pubmed]
  20. SARS, lay epidemiology, and fear. Razum, O., Becher, H., Kapaun, A., Junghanss, T. Lancet (2003) [Pubmed]
  21. Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. Qu, X.X., Hao, P., Song, X.J., Jiang, S.M., Liu, Y.X., Wang, P.G., Rao, X., Song, H.D., Wang, S.Y., Zuo, Y., Zheng, A.H., Luo, M., Wang, H.L., Deng, F., Wang, H.Z., Hu, Z.H., Ding, M.X., Zhao, G.P., Deng, H.K. J. Biol. Chem. (2005) [Pubmed]
  22. Longitudinally profiling neutralizing antibody response to SARS coronavirus with pseudotypes. Temperton, N.J., Chan, P.K., Simmons, G., Zambon, M.C., Tedder, R.S., Takeuchi, Y., Weiss, R.A. Emerging Infect. Dis. (2005) [Pubmed]
  23. SARS patients-derived human recombinant antibodies to S and M proteins efficiently neutralize SARS-coronavirus infectivity. Liang, M.F., Du, R.L., Liu, J.Z., Li, C., Zhang, Q.F., Han, L.L., Yu, J.S., Duan, S.M., Wang, X.F., Wu, K.X., Xiong, Z.H., Jin, Q., Li, D.X. Biomed. Environ. Sci. (2005) [Pubmed]
  24. SARS-associated coronavirus transmission, United States. Isakbaeva, E.T., Khetsuriani, N., Beard, R.S., Peck, A., Erdman, D., Monroe, S.S., Tong, S., Ksiazek, T.G., Lowther, S., Pandya-Smith, I., Anderson, L.J., Lingappa, J., Widdowson, M.A. Emerging Infect. Dis. (2004) [Pubmed]
  25. SARS-associated coronavirus replication in cell lines. Kaye, M. Emerging Infect. Dis. (2006) [Pubmed]
  26. Development of a standard treatment protocol for severe acute respiratory syndrome. So, L.K., Lau, A.C., Yam, L.Y., Cheung, T.M., Poon, E., Yung, R.W., Yuen, K.Y. Lancet (2003) [Pubmed]
  27. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. Akerström, S., Mousavi-Jazi, M., Klingström, J., Leijon, M., Lundkvist, A., Mirazimi, A. J. Virol. (2005) [Pubmed]
  28. Isatin compounds as noncovalent SARS coronavirus 3C-like protease inhibitors. Zhou, L., Liu, Y., Zhang, W., Wei, P., Huang, C., Pei, J., Yuan, Y., Lai, L. J. Med. Chem. (2006) [Pubmed]
  29. Polymorphic drug metabolism in schizophrenic patients with tardive dyskinesia. Arthur, H., Dahl, M.L., Siwers, B., Sjöqvist, F. Journal of clinical psychopharmacology. (1995) [Pubmed]
  30. Vitamin C and SARS coronavirus. Hemilä, H. J. Antimicrob. Chemother. (2003) [Pubmed]
  31. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Luo, C., Luo, H., Zheng, S., Gui, C., Yue, L., Yu, C., Sun, T., He, P., Chen, J., Shen, J., Luo, X., Li, Y., Liu, H., Bai, D., Shen, J., Yang, Y., Li, F., Zuo, J., Hilgenfeld, R., Pei, G., Chen, K., Shen, X., Jiang, H. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  32. Peptides derived from HIV-1, HIV-2, Ebola virus, SARS coronavirus and coronavirus 229E exhibit high affinity binding to the formyl peptide receptor. Mills, J.S. Biochim. Biophys. Acta (2006) [Pubmed]
  33. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Gramberg, T., Hofmann, H., Möller, P., Lalor, P.F., Marzi, A., Geier, M., Krumbiegel, M., Winkler, T., Kirchhoff, F., Adams, D.H., Becker, S., Münch, J., Pöhlmann, S. Virology (2005) [Pubmed]
  34. Yellow lupin (Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate. Jakubowski, H. Biochim. Biophys. Acta (1978) [Pubmed]
  35. SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Yuan, X., Wu, J., Shan, Y., Yao, Z., Dong, B., Chen, B., Zhao, Z., Wang, S., Chen, J., Cong, Y. Virology (2006) [Pubmed]
  36. Expression cloning of functional receptor used by SARS coronavirus. Wang, P., Chen, J., Zheng, A., Nie, Y., Shi, X., Wang, W., Wang, G., Luo, M., Liu, H., Tan, L., Song, X., Wang, Z., Yin, X., Qu, X., Wang, X., Qing, T., Ding, M., Deng, H. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  37. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Sainz, B., Mossel, E.C., Peters, C.J., Garry, R.F. Virology (2004) [Pubmed]
  38. Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Morgenstern, B., Michaelis, M., Baer, P.C., Doerr, H.W., Cinatl, J. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  39. High-dose hydrocortisone reduces expression of the pro-inflammatory chemokines CXCL8 and CXCL10 in SARS coronavirus-infected intestinal cells. Cinatl, J., Michaelis, M., Morgenstern, B., Doerr, H.W. Int. J. Mol. Med. (2005) [Pubmed]
  40. Association of SARS susceptibility with single nucleic acid polymorphisms of OAS1 and MxA genes: a case-control study. He, J., Feng, D., de Vlas, S.J., Wang, H., Fontanet, A., Zhang, P., Plancoulaine, S., Tang, F., Zhan, L., Yang, H., Wang, T., Richardus, J.H., Habbema, J.D., Cao, W. BMC Infect. Dis. (2006) [Pubmed]
  41. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Bisht, H., Roberts, A., Vogel, L., Bukreyev, A., Collins, P.L., Murphy, B.R., Subbarao, K., Moss, B. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  42. Probing the structure of the SARS coronavirus using scanning electron microscopy. Lin, Y., Yan, X., Cao, W., Wang, C., Feng, J., Duan, J., Xie, S. Antivir. Ther. (Lond.) (2004) [Pubmed]
  43. SARS coronavirus detection. Nitsche, A., Schweiger, B., Ellerbrok, H., Niedrig, M., Pauli, G. Emerging Infect. Dis. (2004) [Pubmed]
  44. Detection of SARS-associated coronavirus in throat wash and saliva in early diagnosis. Wang, W.K., Chen, S.Y., Liu, I.J., Chen, Y.C., Chen, H.L., Yang, C.F., Chen, P.J., Yeh, S.H., Kao, C.L., Huang, L.M., Hsueh, P.R., Wang, J.T., Sheng, W.H., Fang, C.T., Hung, C.C., Hsieh, S.M., Su, C.P., Chiang, W.C., Yang, J.Y., Lin, J.H., Hsieh, S.C., Hu, H.P., Chiang, Y.P., Wang, J.T., Yang, P.C., Chang, S.C. Emerging Infect. Dis. (2004) [Pubmed]
WikiGenes - Universities