Components of energy expenditure in the mdx mouse model of Duchenne muscular dystrophy.
Previous observations showing that basal heat production rates and glucose metabolism were reduced in mdx mouse skeletal muscles incubated in vitro led us to study the components of total energy expenditure by open-circuit indirect calorimetry in the intact, free-moving mdx mouse. Our purpose was to verify if the mdx mouse exhibited whole-body alterations in energy metabolism. The results revealed that total and basal energy expenditure, as well as spontaneous activity, energetic cost of activity, and, therefore, energy expended in relation to activity were not significantly different in C57B1/10 (control) and in dystrophic (mdx) mice. In contrast, the thermic effect of food was 32% larger in mdx than in control mice and was accompanied by significant differences in post-prandial glucose and lipid oxidation. The present in vivo study could not show a direct demonstration that impaired glucose metabolism by skeletal muscles participated in this phenomenon. However, since post-prandial glucose metabolism by skeletal muscles contributes a significant part of the thermic effect of food, the present data are in line with previous studies in vitro that show that mdx mouse skeletal muscles probably suffer an impaired control of their energy metabolism.[1]References
- Components of energy expenditure in the mdx mouse model of Duchenne muscular dystrophy. Mokhtarian, A., Decrouy, A., Chinet, A., Even, P.C. Pflugers Arch. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg