The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Energy Metabolism

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Energy Metabolism


Psychiatry related information on Energy Metabolism


High impact information on Energy Metabolism

  • The detailed bioenergetic mechanisms by which isolated mitochondria generate ATP, sequester Ca(2+), generate reactive oxygen species, and undergo Ca(2+)-dependent permeabilization of their inner membrane are currently being applied to the function of mitochondria in situ within neurons under physiological and pathophysiological conditions [11].
  • Finally, mice either lacking or misexpressing different isoforms of creatine kinase have been useful for understanding the detailed role of this important enzyme in cellular energy metabolism [12].
  • Of note, increased food intake, typical of Mc4r null mice, was completely rescued while reduced energy expenditure was unaffected [13].
  • These data illustrate a central role for PGC-1alpha in the control of energy metabolism but also reveal novel systemic compensatory mechanisms and pathogenic effects of impaired energy homeostasis [14].
  • These results reveal that the relative level of TIF2/SRC-1 can modulate energy metabolism [15].

Chemical compound and disease context of Energy Metabolism


Biological context of Energy Metabolism


Anatomical context of Energy Metabolism


Associations of Energy Metabolism with chemical compounds

  • Ethanol, either added to the diet or substituted for other foods, increases 24-hour energy expenditure and decreases lipid oxidation [31].
  • We hypothesized that blockade of beta-adrenergic stimulation with propranolol would decrease resting energy expenditure and muscle catabolism in patients with severe burns [32].
  • The excess energy expenditure attributable to nicotine was more than twice as great during exercise (difference between groups, 0.51 kJ per kilogram per hour, or 12.1 percent of the metabolic rate at rest; P less than 0.001) than during rest (0.23 kJ per kilogram per hour, or 5.3 percent of the metabolic rate at rest; P less than 0.05) [33].
  • Creatine kinase (CK, EC, an enzyme important for energy metabolism in cells of high and fluctuating energy requirements, catalyses the reversible transfer of a phosphoryl goup from phosphocreatine to ADP [34].
  • Brain serotonin and leptin signaling contribute substantially to the regulation of feeding and energy expenditure [35].

Gene context of Energy Metabolism


Analytical, diagnostic and therapeutic context of Energy Metabolism

  • CONCLUSIONS: Insulin administration to nutritionally well-supported livers before harvest improved energy metabolism during preservation and liver function after transplantation [41].
  • In addition, Northern blot analyses indicate that the beta 3AR gene is mainly expressed in mouse brown and white adipose tissues, suggesting that the murine beta 3AR described here is the atypical beta AR involved in the control of energy expenditure in fat tissue [42].
  • In summary, administration of the iron chelator deferoxamine at the time of postischemic reflow results in greater recovery of myocardial function and energy metabolism, which supports the hypothesis that iron plays an important role in the pathogenesis of reperfusion injury [43].
  • Under the same conditions localized changes in brain energy metabolism (DeltaCMR(O2)/CMR(O2)) were obtained from BOLD fMRI data in conjunction with measured changes in cerebral blood flow (DeltaCBF/CBF), cerebral blood volume (DeltaCBV/CBV), and transverse relaxation rates of tissue water (T(2)(*) and T(2)) by MRI methods at 7T [44].
  • We measured 24-hour sedentary energy expenditure (24-hour EE) and sleeping metabolic rate (SMR) in a human respiratory chamber in 17 patients with mild to moderate HD and 17 control subjects matched for age, sex, and body mass index [45].


  1. Adiponectin acts in the brain to decrease body weight. Qi, Y., Takahashi, N., Hileman, S.M., Patel, H.R., Berg, A.H., Pajvani, U.B., Scherer, P.E., Ahima, R.S. Nat. Med. (2004) [Pubmed]
  2. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Montague, C.T., Farooqi, I.S., Whitehead, J.P., Soos, M.A., Rau, H., Wareham, N.J., Sewter, C.P., Digby, J.E., Mohammed, S.N., Hurst, J.A., Cheetham, C.H., Earley, A.R., Barnett, A.H., Prins, J.B., O'Rahilly, S. Nature (1997) [Pubmed]
  3. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Kim, M.S., Park, J.Y., Namkoong, C., Jang, P.G., Ryu, J.W., Song, H.S., Yun, J.Y., Namgoong, I.S., Ha, J., Park, I.S., Lee, I.K., Viollet, B., Youn, J.H., Lee, H.K., Lee, K.U. Nat. Med. (2004) [Pubmed]
  4. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Clément, K., Vaisse, C., Lahlou, N., Cabrol, S., Pelloux, V., Cassuto, D., Gourmelen, M., Dina, C., Chambaz, J., Lacorte, J.M., Basdevant, A., Bougnères, P., Lebouc, Y., Froguel, P., Guy-Grand, B. Nature (1998) [Pubmed]
  5. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Géloën, A., Even, P.C., Cervera, P., Le Bouc, Y. Nature (2003) [Pubmed]
  6. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Konradi, C., Eaton, M., MacDonald, M.L., Walsh, J., Benes, F.M., Heckers, S. Arch. Gen. Psychiatry (2004) [Pubmed]
  7. HDL, HDL2, and HDL3 subfractions, and the risk of acute myocardial infarction. A prospective population study in eastern Finnish men. Salonen, J.T., Salonen, R., Seppänen, K., Rauramaa, R., Tuomilehto, J. Circulation (1991) [Pubmed]
  8. Energy metabolism defects in Huntington's disease and effects of coenzyme Q10. Koroshetz, W.J., Jenkins, B.G., Rosen, B.R., Beal, M.F. Ann. Neurol. (1997) [Pubmed]
  9. Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Emilsson, V., Liu, Y.L., Cawthorne, M.A., Morton, N.M., Davenport, M. Diabetes (1997) [Pubmed]
  10. Energy expenditure and body composition in children with Crohn's disease: effect of enteral nutrition and treatment with prednisolone. Azcue, M., Rashid, M., Griffiths, A., Pencharz, P.B. Gut (1997) [Pubmed]
  11. Mitochondria and neuronal survival. Nicholls, D.G., Budd, S.L. Physiol. Rev. (2000) [Pubmed]
  12. Insights into cellular energy metabolism from transgenic mice. Koretsky, A.P. Physiol. Rev. (1995) [Pubmed]
  13. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Balthasar, N., Dalgaard, L.T., Lee, C.E., Yu, J., Funahashi, H., Williams, T., Ferreira, M., Tang, V., McGovern, R.A., Kenny, C.D., Christiansen, L.M., Edelstein, E., Choi, B., Boss, O., Aschkenasi, C., Zhang, C.Y., Mountjoy, K., Kishi, T., Elmquist, J.K., Lowell, B.B. Cell (2005) [Pubmed]
  14. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Lin, J., Wu, P.H., Tarr, P.T., Lindenberg, K.S., St-Pierre, J., Zhang, C.Y., Mootha, V.K., Jäger, S., Vianna, C.R., Reznick, R.M., Cui, L., Manieri, M., Donovan, M.X., Wu, Z., Cooper, M.P., Fan, M.C., Rohas, L.M., Zavacki, A.M., Cinti, S., Shulman, G.I., Lowell, B.B., Krainc, D., Spiegelman, B.M. Cell (2004) [Pubmed]
  15. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Picard, F., Géhin, M., Annicotte, J., Rocchi, S., Champy, M.F., O'Malley, B.W., Chambon, P., Auwerx, J. Cell (2002) [Pubmed]
  16. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Cui, X., Wise, R.P., Schnable, P.S. Science (1996) [Pubmed]
  17. Thermic effect of infused glucose and insulin in man. Decreased response with increased insulin resistance in obesity and noninsulin-dependent diabetes mellitus. Ravussin, E., Bogardus, C., Schwartz, R.S., Robbins, D.C., Wolfe, R.R., Horton, E.S., Danforth, E., Sims, E.A. J. Clin. Invest. (1983) [Pubmed]
  18. Biology of cachexia. Tisdale, M.J. J. Natl. Cancer Inst. (1997) [Pubmed]
  19. Selective vulnerability of the brain: new insights into the pathophysiology of stroke. Collins, R.C., Dobkin, B.H., Choi, D.W. Ann. Intern. Med. (1989) [Pubmed]
  20. NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels. Koretsky, A.P., Brosnan, M.J., Chen, L.H., Chen, J.D., Van Dyke, T. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  21. Effect of severe burn injury on substrate cycling by glucose and fatty acids. Wolfe, R.R., Herndon, D.N., Jahoor, F., Miyoshi, H., Wolfe, M. N. Engl. J. Med. (1987) [Pubmed]
  22. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. Elson, D.A., Thurston, G., Huang, L.E., Ginzinger, D.G., McDonald, D.M., Johnson, R.S., Arbeit, J.M. Genes Dev. (2001) [Pubmed]
  23. Critical role of human T-lymphotropic virus type 1 accessory proteins in viral replication and pathogenesis. Albrecht, B., Lairmore, M.D. Microbiol. Mol. Biol. Rev. (2002) [Pubmed]
  24. Effect of beta and alpha adrenergic blockade on glucose-induced thermogenesis in man. DeFronzo, R.A., Thorin, D., Felber, J.P., Simonson, D.C., Thiebaud, D., Jequier, E., Golay, A. J. Clin. Invest. (1984) [Pubmed]
  25. A selective human beta3 adrenergic receptor agonist increases metabolic rate in rhesus monkeys. Fisher, M.H., Amend, A.M., Bach, T.J., Barker, J.M., Brady, E.J., Candelore, M.R., Carroll, D., Cascieri, M.A., Chiu, S.H., Deng, L., Forrest, M.J., Hegarty-Friscino, B., Guan, X.M., Hom, G.J., Hutchins, J.E., Kelly, L.J., Mathvink, R.J., Metzger, J.M., Miller, R.R., Ok, H.O., Parmee, E.R., Saperstein, R., Strader, C.D., Stearns, R.A., MacIntyre, D.E. J. Clin. Invest. (1998) [Pubmed]
  26. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Shimomura, I., Hammer, R.E., Ikemoto, S., Brown, M.S., Goldstein, J.L. Nature (1999) [Pubmed]
  27. Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor. Chan, B.L., Lisanti, M.P., Rodriguez-Boulan, E., Saltiel, A.R. Science (1988) [Pubmed]
  28. Biological action of leptin as an angiogenic factor. Sierra-Honigmann, M.R., Nath, A.K., Murakami, C., García-Cardeña, G., Papapetropoulos, A., Sessa, W.C., Madge, L.A., Schechner, J.S., Schwabb, M.B., Polverini, P.J., Flores-Riveros, J.R. Science (1998) [Pubmed]
  29. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Puigserver, P., Rhee, J., Lin, J., Wu, Z., Yoon, J.C., Zhang, C.Y., Krauss, S., Mootha, V.K., Lowell, B.B., Spiegelman, B.M. Mol. Cell (2001) [Pubmed]
  30. Total energy expenditure and the level of physical activity correlate with plasma leptin concentrations in five-year-old children. Salbe, A.D., Nicolson, M., Ravussin, E. J. Clin. Invest. (1997) [Pubmed]
  31. The effect of ethanol on fat storage in healthy subjects. Suter, P.M., Schutz, Y., Jequier, E. N. Engl. J. Med. (1992) [Pubmed]
  32. Reversal of catabolism by beta-blockade after severe burns. Herndon, D.N., Hart, D.W., Wolf, S.E., Chinkes, D.L., Wolfe, R.R. N. Engl. J. Med. (2001) [Pubmed]
  33. The effect of nicotine on energy expenditure during light physical activity. Perkins, K.A., Epstein, L.H., Marks, B.L., Stiller, R.L., Jacob, R.G. N. Engl. J. Med. (1989) [Pubmed]
  34. Structure of mitochondrial creatine kinase. Fritz-Wolf, K., Schnyder, T., Wallimann, T., Kabsch, W. Nature (1996) [Pubmed]
  35. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nonogaki, K., Strack, A.M., Dallman, M.F., Tecott, L.H. Nat. Med. (1998) [Pubmed]
  36. Interleukin-6-deficient mice develop mature-onset obesity. Wallenius, V., Wallenius, K., Ahrén, B., Rudling, M., Carlsten, H., Dickson, S.L., Ohlsson, C., Jansson, J.O. Nat. Med. (2002) [Pubmed]
  37. Enhanced insulin sensitivity, energy expenditure and thermogenesis in adipose-specific Pten suppression in mice. Komazawa, N., Matsuda, M., Kondoh, G., Mizunoya, W., Iwaki, M., Takagi, T., Sumikawa, Y., Inoue, K., Suzuki, A., Mak, T.W., Nakano, T., Fushiki, T., Takeda, J., Shimomura, I. Nat. Med. (2004) [Pubmed]
  38. Genomic imprinting and kinship: how good is the evidence? Haig, D. Annu. Rev. Genet. (2004) [Pubmed]
  39. Fatty acid control of lipoprotein lipase: a link between energy metabolism and lipid transport. Peterson, J., Bihain, B.E., Bengtsson-Olivecrona, G., Deckelbaum, R.J., Carpentier, Y.A., Olivecrona, T. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  40. Obesity and mild hyperinsulinemia found in neuropeptide Y-Y1 receptor-deficient mice. Kushi, A., Sasai, H., Koizumi, H., Takeda, N., Yokoyama, M., Nakamura, M. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  41. Improvement of rat liver graft function by insulin administration to donor. Morimoto, Y., Kamiike, W., Nishida, T., Hatanaka, N., Shimizu, S., Huang, T.P., Hamada, E., Uchiyama, Y., Yoshida, Y., Furuya, E., Matsuda, H. Gastroenterology (1996) [Pubmed]
  42. Molecular characterization of the mouse beta 3-adrenergic receptor: relationship with the atypical receptor of adipocytes. Nahmias, C., Blin, N., Elalouf, J.M., Mattei, M.G., Strosberg, A.D., Emorine, L.J. EMBO J. (1991) [Pubmed]
  43. Improvement of postischemic myocardial function and metabolism induced by administration of deferoxamine at the time of reflow: the role of iron in the pathogenesis of reperfusion injury. Ambrosio, G., Zweier, J.L., Jacobus, W.E., Weisfeldt, M.L., Flaherty, J.T. Circulation (1987) [Pubmed]
  44. Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Smith, A.J., Blumenfeld, H., Behar, K.L., Rothman, D.L., Shulman, R.G., Hyder, F. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  45. Higher sedentary energy expenditure in patients with Huntington's disease. Pratley, R.E., Salbe, A.D., Ravussin, E., Caviness, J.N. Ann. Neurol. (2000) [Pubmed]
WikiGenes - Universities