The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Characterization of crystalline formate dehydrogenase H from Escherichia coli. Stabilization, EPR spectroscopy, and preliminary crystallographic analysis.

The selenocysteine-containing formate dehydrogenase H ( FDH) is an 80-kDa component of the Escherichia coli formate-hydrogen lyase complex. The molybdenum-coordinated selenocysteine is essential for catalytic activity of the native enzyme. FDH in dilute solutions (30 microg/ml) was rapidly inactivated at basic pH or in the presence of formate under anaerobic conditions, but at higher enzyme concentrations (>/=3 mg/ml) the enzyme was relatively stable. The formate-reduced enzyme was extremely sensitive to air inactivation under all conditions examined. Active formate-reduced FDH was crystallized under anaerobic conditions in the presence of ammonium sulfate and PEG 400. The crystals diffract to 2.6 A resolution and belong to a space group of P4(1)2(1)2 or P4(3)2(1)2 with unit cell dimensions a = b = 146.1 A and c = 82.7 A. There is one monomer of FDH per crystallographic asymmetric unit. Similar diffraction quality crystals of oxidized FDH could be obtained by oxidation of crystals of formate-reduced enzyme with benzyl viologen. By EPR spectroscopy, a signal of a single reduced FeS cluster was found in a crystal of reduced FDH, but not in a crystal of oxidized enzyme, whereas Mo(V) signal was not detected in either form of crystalline FDH. This suggests that Mo(IV)- and the reduced FeS cluster-containing form of the enzyme was crystallized and this could be converted into Mo(VI)- and oxidized FeS cluster form upon oxidation. A procedure that combines anaerobic and cryocrystallography has been developed that is generally applicable to crystallographic studies of oxygen-sensitive enzymes. These data provide the first example of crystallization of a substrate-reduced form of a Se- and Mo-containing enzyme.[1]

References

  1. Characterization of crystalline formate dehydrogenase H from Escherichia coli. Stabilization, EPR spectroscopy, and preliminary crystallographic analysis. Gladyshev, V.N., Boyington, J.C., Khangulov, S.V., Grahame, D.A., Stadtman, T.C., Sun, P.D. J. Biol. Chem. (1996) [Pubmed]
 
WikiGenes - Universities