The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Molybdenum-101     molybdenum

Synonyms: AC1L437P, 101Mo, 14191-83-4, Molybdenum, isotope of mass 101
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of molybdenum


Psychiatry related information on molybdenum

  • Here we report that cycloketones adsorbed on molybdenum carbide, a material known to catalyse a variety of hydrocarbon conversion reactions, transform into surface-bound alkylidenes stable to above 900 K [6].
  • Molybdenum cofactor deficiency (MoCoD) is a fatal disorder manifesting, shortly after birth, with profound neurological abnormalities, mental retardation, and severe seizures unresponsive to any therapy [7].
  • In a family with molybdenum cofactor deficiency, the onset in the index case was delayed until 1 year of age, when the patient presented with an episode of lethargy and inconsolable crying culminating in a seizure [8].
  • The influences of reaction time and the molar ratio of molybdenum and H2O2 on the morphologies of MoO3 nanostructures have been investigated [9].

High impact information on molybdenum

  • The available crystallographic structures for members of these families are discussed within the framework of the active site structure and catalytic mechanisms of molybdenum-cofactor-containing enzymes [10].
  • The molybdenum-containing enzyme sulfite oxidase catalyzes the conversion of sulfite to sulfate, the terminal step in the oxidative degradation of cysteine and methionine [11].
  • The mutant phenotype resembled that of humans with hereditary molybdenum cofactor deficiency and hyperekplexia (a failure of inhibitory neurotransmission), suggesting that gephyrin function may be impaired in both diseases [12].
  • Nitrogenase consists of two proteins: the iron (Fe)-protein, which couples hydrolysis of ATP to electron transfer, and the molybdenum-iron (MoFe)-protein, which contains the dinitrogen binding site [13].
  • Classical xanthinuria type I lacks only xanthine dehydrogenase activity, while type II and molybdenum cofactor deficiency also lack one or two additional enzyme activities [14].

Chemical compound and disease context of molybdenum


Biological context of molybdenum

  • For 50 years molybdenum had been considered to have an indispensable catalytic function for nitrogen fixation [20].
  • Six conserved serine residues in the hinge 1 region of NR, which separates the molybdenum cofactor and heme domains, were specifically targeted for mutagenesis because they are located in a potential regulatory region identified as a target for NR kinases in spinach [21].
  • The marked effects observed are interpreted in light of the three-dimensional structure and depict a plasticity that contributes to an efficient electron transfer in the complex from the heme I of NapB to the molybdenum catalytic site of NapA [22].
  • The molybdenum hydroxylases are distinct from other biological systems catalyzing hydroxylation reactions in that the oxygen atom incorporated into the product is derived from water rather than molecular oxygen [23].
  • Diversity and phylogeny of gephyrin: tissue-specific splice variants, gene structure, and sequence similarities to molybdenum cofactor-synthesizing and cytoskeleton-associated proteins [24].

Anatomical context of molybdenum


Associations of molybdenum with other chemical compounds

  • It has been established that hepatic molybdenum levels and xanthine oxidase activity were within normal values and comparable to those observed in control samples preserved from the original study along with the deficient tissue sample [29].
  • All patients underwent epicutaneous patch tests (Finn chamber method) for nickel, chromate, molybdenum, manganese, and small 316L stainless-steel plates [3].
  • Molybdenum and tungsten are found in biological systems in a mononuclear form in the active site of a diverse group of enzymes that generally catalyze oxygen-atom-transfer reactions [30].
  • Transcription of the ferredoxin gene on a 1320-bp transcript was only detectable under conditions in which A. chroococcum MCD1155, which carries a chromosomal deletion of 6.3 kb removing the entire nifHDK cluster, is capable of fixing N2, i.e. in media containing no added molybdenum or high levels of NH3 [31].
  • Recombinant, catalytically active Pichia angusta nitrate-reducing, molybdenum-containing fragment (NR-Mo) was expressed in P. pastoris and purified [32].

Gene context of molybdenum

  • A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency [25].
  • The napA gene codes for a protein with a high homology to the periplasmic nitrate reductase from Alcaligenes eutrophus and, to a lesser extent, to other prokaryotic nitrate reductases and molybdenum-containing enzymes [33].
  • Ten novel mutations in the molybdenum cofactor genes MOCS1 and MOCS2 and in vitro characterization of a MOCS2 mutation that abolishes the binding ability of molybdopterin synthase [34].
  • The molybdenum- and iron-containing enzyme sulfite oxidase catalyzes the physiologically vital oxidation of sulfite to sulfate [35].
  • Heat-treated preparations from chlA and chlE mutants which do not possess molybdenum cofactor activity fail to restore the activation [36].

Analytical, diagnostic and therapeutic context of molybdenum


  1. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Boyington, J.C., Gladyshev, V.N., Khangulov, S.V., Stadtman, T.C., Sun, P.D. Science (1997) [Pubmed]
  2. The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 A resolution structures. Chan, M.K., Kim, J., Rees, D.C. Science (1993) [Pubmed]
  3. Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Köster, R., Vieluf, D., Kiehn, M., Sommerauer, M., Kähler, J., Baldus, S., Meinertz, T., Hamm, C.W. Lancet (2000) [Pubmed]
  4. Metal and sulfur composition of iron-molybdenum cofactor of nitrogenase. Nelson, M.J., Levy, M.A., Orme-Johnson, W.H. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  5. Zn, Cu and Co in cyanobacteria: selective control of metal availability. Cavet, J.S., Borrelly, G.P., Robinson, N.J. FEMS Microbiol. Rev. (2003) [Pubmed]
  6. Formation of thermally stable alkylidene layers on a catalytically active surface. Zahidi, E.M., Oudghiri-Hassani, H., McBreen, P.H. Nature (2001) [Pubmed]
  7. Localization of a gene for molybdenum cofactor deficiency, on the short arm of chromosome 6, by homozygosity mapping. Shalata, A., Mandel, H., Reiss, J., Szargel, R., Cohen-Akenine, A., Dorche, C., Zabot, M.T., Van Gennip, A., Abeling, N., Berant, M., Cohen, N. Am. J. Hum. Genet. (1998) [Pubmed]
  8. Molybdenum cofactor deficiency-phenotypic variability in a family with a late-onset variant. Hughes, E.F., Fairbanks, L., Simmonds, H.A., Robinson, R.O. Developmental medicine and child neurology. (1998) [Pubmed]
  9. Molybdenum trioxide nanostructures: the evolution from helical nanosheets to crosslike nanoflowers to nanobelts. Li, G., Jiang, L., Pang, S., Peng, H., Zhang, Z. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical (2006) [Pubmed]
  10. Molybdenum-cofactor-containing enzymes: structure and mechanism. Kisker, C., Schindelin, H., Rees, D.C. Annu. Rev. Biochem. (1997) [Pubmed]
  11. Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Kisker, C., Schindelin, H., Pacheco, A., Wehbi, W.A., Garrett, R.M., Rajagopalan, K.V., Enemark, J.H., Rees, D.C. Cell (1997) [Pubmed]
  12. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Feng, G., Tintrup, H., Kirsch, J., Nichol, M.C., Kuhse, J., Betz, H., Sanes, J.R. Science (1998) [Pubmed]
  13. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Georgiadis, M.M., Komiya, H., Chakrabarti, P., Woo, D., Kornuc, J.J., Rees, D.C. Science (1992) [Pubmed]
  14. Identification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria. Ichida, K., Amaya, Y., Kamatani, N., Nishino, T., Hosoya, T., Sakai, O. J. Clin. Invest. (1997) [Pubmed]
  15. The high-resolution crystal structure of the molybdate-dependent transcriptional regulator (ModE) from Escherichia coli: a novel combination of domain folds. Hall, D.R., Gourley, D.G., Leonard, G.A., Duke, E.M., Anderson, L.A., Boxer, D.H., Hunter, W.N. EMBO J. (1999) [Pubmed]
  16. Nicotinic acid hydroxylase from Clostridium barkeri: electron paramagnetic resonance studies show that selenium is coordinated with molybdenum in the catalytically active selenium-dependent enzyme. Gladyshev, V.N., Khangulov, S.V., Stadtman, T.C. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  17. Isolation of a molybdenum--iron cluster from nitrogenase. Shah, V.K., Brill, W.J. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  18. Effect of dietary molybdenum on esophageal carcinogenesis in rats induced by N-methyl-N-benzylnitrosamine. Komada, H., Kise, Y., Nakagawa, M., Yamamura, M., Hioki, K., Yamamoto, M. Cancer Res. (1990) [Pubmed]
  19. The molybdenum cofactor of Escherichia coli nitrate reductase A (NarGHI). Effect of a mobAB mutation and interactions with [Fe-S] clusters. Rothery, R.A., Magalon, A., Giordano, G., Guigliarelli, B., Blasco, F., Weiner, J.H. J. Biol. Chem. (1998) [Pubmed]
  20. Nitrogenases without molybdenum. Pau, R.N. Trends Biochem. Sci. (1989) [Pubmed]
  21. Identification in vitro of a post-translational regulatory site in the hinge 1 region of Arabidopsis nitrate reductase. Su, W., Huber, S.C., Crawford, N.M. Plant Cell (1996) [Pubmed]
  22. Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Arnoux, P., Sabaty, M., Alric, J., Frangioni, B., Guigliarelli, B., Adriano, J.M., Pignol, D. Nat. Struct. Biol. (2003) [Pubmed]
  23. The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition. Okamoto, K., Matsumoto, K., Hille, R., Eger, B.T., Pai, E.F., Nishino, T. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  24. Diversity and phylogeny of gephyrin: tissue-specific splice variants, gene structure, and sequence similarities to molybdenum cofactor-synthesizing and cytoskeleton-associated proteins. Ramming, M., Kins, S., Werner, N., Hermann, A., Betz, H., Kirsch, J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  25. A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency. Reiss, J., Gross-Hardt, S., Christensen, E., Schmidt, P., Mendel, R.R., Schwarz, G. Am. J. Hum. Genet. (2001) [Pubmed]
  26. The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells. Stallmeyer, B., Schwarz, G., Schulze, J., Nerlich, A., Reiss, J., Kirsch, J., Mendel, R.R. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  27. Identification of the Missing Component in the Mitochondrial Benzamidoxime Prodrug-converting System as a Novel Molybdenum Enzyme. Havemeyer, A., Bittner, F., Wollers, S., Mendel, R., Kunze, T., Clement, B. J. Biol. Chem. (2006) [Pubmed]
  28. Molybdenum content of human milk. Casey, C.E. Am. J. Clin. Nutr. (1989) [Pubmed]
  29. Human sulfite oxidase deficiency. Characterization of the molecular defect in a multicomponent system. Johnson, J.L., Rajagopalan, K.V. J. Clin. Invest. (1976) [Pubmed]
  30. Structural and Electron Paramagnetic Resonance (EPR) Studies of Mononuclear Molybdenum Enzymes from Sulfate-Reducing Bacteria. Brondino, C.D., Rivas, M.G., Rom??o, M.J., Moura, J.J., Moura, I. Acc. Chem. Res. (2006) [Pubmed]
  31. Second gene (nifH*) coding for a nitrogenase iron protein in Azotobacter chroococcum is adjacent to a gene coding for a ferredoxin-like protein. Robson, R., Woodley, P., Jones, R. EMBO J. (1986) [Pubmed]
  32. Structural basis of eukaryotic nitrate reduction: crystal structures of the nitrate reductase active site. Fischer, K., Barbier, G.G., Hecht, H.J., Mendel, R.R., Campbell, W.H., Schwarz, G. Plant Cell (2005) [Pubmed]
  33. Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Reyes, F., Roldán, M.D., Klipp, W., Castillo, F., Moreno-Vivián, C. Mol. Microbiol. (1996) [Pubmed]
  34. Ten novel mutations in the molybdenum cofactor genes MOCS1 and MOCS2 and in vitro characterization of a MOCS2 mutation that abolishes the binding ability of molybdopterin synthase. Leimkühler, S., Charcosset, M., Latour, P., Dorche, C., Kleppe, S., Scaglia, F., Szymczak, I., Schupp, P., Hahnewald, R., Reiss, J. Hum. Genet. (2005) [Pubmed]
  35. The 1.2 A structure of the human sulfite oxidase cytochrome b(5) domain. Rudolph, M.J., Johnson, J.L., Rajagopalan, K.V., Kisker, C. Acta Crystallogr. D Biol. Crystallogr. (2003) [Pubmed]
  36. Activation in vitro of respiratory nitrate reductase of Escherichia coli K12 grown in the presence of tungstate. Involvement of molybdenum cofactor. Saracino, L., Violet, M., Boxer, D.H., Giordano, G. Eur. J. Biochem. (1986) [Pubmed]
  37. Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Rudolph, M.J., Wuebbens, M.M., Rajagopalan, K.V., Schindelin, H. Nat. Struct. Biol. (2001) [Pubmed]
  38. Consequences of removal of a molybdenum ligand (DmsA-Ser-176) of Escherichia coli dimethyl sulfoxide reductase. Trieber, C.A., Rothery, R.A., Weiner, J.H. J. Biol. Chem. (1996) [Pubmed]
  39. Resonance-enhanced Raman scattering from the molybdenum center of xanthine oxidase. Oertling, W.A., Hille, R. J. Biol. Chem. (1990) [Pubmed]
WikiGenes - Universities