The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Distinct mechanisms contribute to stringent substrate specificity of tissue-type plasminogen activator.

Tissue-type plasminogen activator (t-PA) has evolved to optimize cleavage of plasminogen ( Plg) while minimizing cleavage of other potential protein and peptide substrates. We find that the S2 and S2 subsites of t-PA are important determinants of specificity, and occupancy of the S3 subsite is essential for catalysis. t-PA efficiently hydrolyzes a protein substrate which incorporates an optimized substrate sequence, revealing the ability of the protease to participate in the highly selective cleavage of protein fusions. Surprisingly, t-PA cleaves this engineered protein substrate with a Km that is reduced 950-fold relative to the Km for hydrolysis of the same target sequence within a peptide. This reduction of Km suggests that binding is facilitated by interactions between protein substrate and protease that are distant from the P4-P2' residues. We use this kinetic data to derive a model in which several distinct mechanisms contribute to the remarkable specificity of t-PA.[1]

References

  1. Distinct mechanisms contribute to stringent substrate specificity of tissue-type plasminogen activator. Coombs, G.S., Dang, A.T., Madison, E.L., Corey, D.R. J. Biol. Chem. (1996) [Pubmed]
 
WikiGenes - Universities