The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Kinetics of association and dissociation of two enantiomers, NSC 613863 (R)-(+) and NSC 613862 (S)-(-) (CI 980), to tubulin.

The kinetics of binding of R- and S-enantiomers were studied by the fluorescence stopped-flow technique. For the R-enantiomer, the time course of the increase in fluorescence is best fitted by a sum of two exponentials. In pseudo-first-order conditions, the first observed rate constant showed a linear concentration dependence whereas the second showed a hyperbolic one. The dissociation rate constants were determined independently by displacement experiments with 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one ( MTC). The two exponential phases were assumed to be due to a two-step binding mechanism: an initial binding followed by a conformational change. This is different from colchicine and MTC binding, where the two phases show a hyperbolic concentration dependence and are attributed to the parallel binding to different isoforms of tubulin [Banerjee, A., & Luduena, R. F. (1992) J. Biol. Chem. 267, 13335-13339]. R-isomer binding did not discriminate between the tubulin isoforms. The temperature dependence of all the rate constants were measured, and the entire thermodynamic reaction path was constructed. For the S-isomer, the direct fluorescence stopped-flow study showed that the signals were largely imputable to the fluorescence of the binding at low-affinity sites [Leynadier, D., Peyrot, V., Sarrazin, M., Briand, C., Andreu, J. M., Rener, G. A., & Temple, C., Jr. (1993) Biochemistry 32, 10674-10682]. Therefore, we exploited the competition between R- and S-isomers to determine the binding kinetics of the S-isomer to the R-site. The observed rate constants for competitive binding showed a linear concentration dependence, thus allowing us to calculate the association rate constant of the S-isomer to the R-site. The kinetics of displacement of the S-isomer by MTC allowed the dissociation rate constant for the S-isomer to be determined. The binding of both enantiomers to tubulin in presence of tropolone methyl ether (analog of the colchicine C ring) was decreased, indicating the involvement of the C subsite.[1]

References

  1. Kinetics of association and dissociation of two enantiomers, NSC 613863 (R)-(+) and NSC 613862 (S)-(-) (CI 980), to tubulin. Barbier, P., Peyrot, V., Dumortier, C., D'Hoore, A., Rener, G.A., Engelborghs, Y. Biochemistry (1996) [Pubmed]
 
WikiGenes - Universities