The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Tropolone     2-hydroxycyclohepta-2,4,6- trien-1-one

Synonyms: PubChem6330, CHEMBL121188, CCRIS 6609, NCIMech_000829, T89702_ALDRICH, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tropolone

 

High impact information on Tropolone

  • In addition, allocolchicine binding is about 6 kJ.mol-1 less exothermic than MTC binding, which could be attributed to the presence in allocolchicine of a substituted phenyl ring instead of the colchicine-MTC tropolone ring [6].
  • Unlike tubulin, the antibody binding site tolerated numerous changes in the tropolone moiety (C ring) [7].
  • The tumour COMT, which was predominantly in the cytosol, was Mg2+ dependent and had a comparable sensitivity to inhibition by tropolone as purified beef-liver COMT [8].
  • The export mechanism was selective for tHcy over cyst(e)ine, total glutathione (tGSH) or cysteinylglycine (Cys-Gly). tHcy export from astrocytes was also induced by the COMT substrates levodopa (L-DOPA), dopamine and quercetin, and it was blocked by the COMT inhibitors tropolone and entacapone [9].
  • The finding that the binding of tropolone methyl ether (ring C of COL) induced a GTPase activity shows that ring C contains the ability to induce both substoichiometric microtubule inhibition and GTPase activity [10].
 

Chemical compound and disease context of Tropolone

  • Eight patients (seven with renal carcinoma and one with melanoma) treated on a protocol with chronic indomethacin and ranitidine with three courses of continuous infusion of IL-2 had peripheral blood leukocytes withdrawn 12-36 h after completion of IL-2 therapy, labelled with 111In tropolone and reinjected [11].
  • Two hydroxymethyltropolones and two tropolone acetate derivatives were found to inhibit an aminoglycoside-adenylyltranferase in a gentamicin-resistant Escherichia coli strain [12].
 

Biological context of Tropolone

 

Anatomical context of Tropolone

 

Associations of Tropolone with other chemical compounds

 

Gene context of Tropolone

  • Uptake and cellular retention of 3H-catecholamines was increased by up to fourfold by two COMT inhibitors, tropolone and Ro 41-0960, with potencies similar to those for inhibition of COMT activity, whereas the uptake of two transporter substrates that are not substrates for COMT, [3H]serotonin and [3H]MPP+, was unaffected [27].
  • Tropolone inhibited TPMT with a Ki of approximately 0.85 mM [28].
  • Three dihydroxy (catecholic) dihydroisoquinolines, including the 1-benzyl (DesDHP) and the 1-methyl (DSAL) analogs, were found to inhibit COMT activity in rat liver supernatant more effectively than the well-known inhibitor, tropolone [29].
  • Simple analogues of the tropolone and trimethoxyphenyl moieties of colchicine have been used as probes for the colchicine binding site of purified calf brain tubulin [30].
  • The action of the tyrosinase inhibitor tropolone was also studied [31].
 

Analytical, diagnostic and therapeutic context of Tropolone

References

  1. Synthesis and antitumor activity of tropolone derivatives. 7. Bistropolones containing connecting methylene chains. Yamato, M., Ando, J., Sakaki, K., Hashigaki, K., Wataya, Y., Tsukagoshi, S., Tashiro, T., Tsuruo, T. J. Med. Chem. (1992) [Pubmed]
  2. In-111 labeled leukocytes: a review of problems in image interpretation. McAfee, J.G., Samin, A. Radiology. (1985) [Pubmed]
  3. Lymphocyte labelling with indium: cytotoxicity studies. Ghaleb, N.S., Roath, S., Wyeth, P. European journal of nuclear medicine. (1985) [Pubmed]
  4. Changes in the incidence and duration of ventricular fibrillation in dependence on the extraneuronal accumulation of isoprenaline in the perfused rat heart. Sono, K., Kurahashi, K., Fujiwara, M. Naunyn Schmiedebergs Arch. Pharmacol. (1985) [Pubmed]
  5. Augmentation of the sterilizing effect of neonatal androgenization with tropolone, a catechol-O-methyltransferase inhibitor, in female rats. Reznikov, A.G., Nosenko, N.D., Tarasenko, L.V. Neuroendocrinology (1990) [Pubmed]
  6. A thermodynamic study of the interaction of tubulin with colchicine site ligands. Menéndez, M., Laynez, J., Medrano, F.J., Andreu, J.M. J. Biol. Chem. (1989) [Pubmed]
  7. Colchicine binding to antibodies. Wolff, J., Capraro, H.G., Brossi, A., Cook, G.H. J. Biol. Chem. (1980) [Pubmed]
  8. Monoamine oxidase and catechol-O-methyltransferase activity in hamster and rat insulinomas. Feldman, J.M., Reintgen, D.S., Seigler, H.F. Diabetologia (1979) [Pubmed]
  9. Activation of catechol-O-methyltransferase in astrocytes stimulates homocysteine synthesis and export to neurons. Huang, G., Dragan, M., Freeman, D., Wilson, J.X. Glia (2005) [Pubmed]
  10. Linkages in tubulin-colchicine functions: the role of the ring C (C') oxygens and ring B in the controls. Pérez-Ramírez, B., Gorbunoff, M.J., Timasheff, S.N. Biochemistry (1998) [Pubmed]
  11. Utility of 111In-labelled leukocytes in patients completing high-dose interleukin-2 therapy: a pilot study. Mertens, W.C., Power, J.E. Nuclear medicine communications. (1994) [Pubmed]
  12. New inhibitors for aminoglycoside-adenylyltransferase. Saleh, N.A., Zwiefak, A., Peczyńska-Czoch, W., Mordarski, M., Pulverer, G. Zentralblatt für Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology. (1988) [Pubmed]
  13. Synthesis and antitumor activity of tropolone derivatives. 6. Structure-activity relationships of antitumor-active tropolone and 8-hydroxyquinoline derivatives. Yamato, M., Hashigaki, K., Yasumoto, Y., Sakai, J., Luduena, R.F., Banerjee, A., Tsukagoshi, S., Tashiro, T., Tsuruo, T. J. Med. Chem. (1987) [Pubmed]
  14. Comparison of oxine and tropolone methods for labeling human platelets with indium-111. Kotzé, H.F., Heyns, A.D., Lötter, M.G., Pieters, H., Roodt, J.P., Sweetlove, M.A., Badenhorst, P.N. J. Nucl. Med. (1991) [Pubmed]
  15. Neutrophil labeling with indium-111: tropolone vs. oxine. Gunter, K.P., Lukens, J.N., Clanton, J.A., Morris, P.J., Janco, R.L., English, D. Radiology. (1983) [Pubmed]
  16. Studies toward the biomimetic synthesis of tropolone natural products via a hetero Diels-Alder reaction. Baldwin, J.E., Mayweg, A.V., Neumann, K., Pritchard, G.J. Org. Lett. (1999) [Pubmed]
  17. Platelet labelling with indium-hydroxypyridinone and indium-hydroxypyranone complexes. Abeysinghe, R.D., Ellis, B.L., Porter, J.B. European journal of nuclear medicine. (1994) [Pubmed]
  18. Toxicity of indium-111 on the radiolabeled lymphocyte. Balaban, E.P., Simon, T.R., Frenkel, E.P. J. Nucl. Med. (1987) [Pubmed]
  19. Carbon-13 nuclear magnetic resonance study of microtubule protein: evidence for a second colchicine site involved in the inhibition of microtubule assembly. Ringel, I., Sternlicht, H. Biochemistry (1984) [Pubmed]
  20. No difference in sensitivity for occult infection between tropolone- and oxine-labeled indium-111 leukocytes. Datz, F.L., Bedont, R.A., Baker, W.J., Alazraki, N.P., Taylor, A. J. Nucl. Med. (1985) [Pubmed]
  21. In vivo red blood cell compatibility testing using indium-113m tropolone-labeled red blood cells. Morrissey, G.J., Gravelle, D., Dietz, G., Driedger, A.A., King, M., Cradduck, T.D. J. Nucl. Med. (1988) [Pubmed]
  22. Optimum conditions for radiolabelling human granulocytes and mixed leucocytes with 111In-tropolonate. Danpure, H.J., Osman, S. European journal of nuclear medicine. (1988) [Pubmed]
  23. Synthesis and antitumor activity of tropolone derivatives. 3. Yamato, M., Hashigaki, K., Kokubu, N., Tashiro, T., Tsuruo, T. J. Med. Chem. (1986) [Pubmed]
  24. Indium-111 platelet kinetics in normal human subjects: tropolone versus oxine methods. Vallabhajosula, S., Machac, J., Goldsmith, S.J., Lipszyc, H., Badimon, L., Rand, J., Fuster, V. J. Nucl. Med. (1986) [Pubmed]
  25. Fluorescence stopped-flow study of the interaction of tubulin with the antimitotic drug MDL 27048. Silence, K., D'Hoore, A., Engelborghs, Y., Peyrot, V., Briand, C. Biochemistry (1992) [Pubmed]
  26. On the recovery of [3H]noradrenaline from different metabolic compartments of rat brain with respect to the role of catechol-O-methyltransferase. Köster, G., Goede, E., Breuer, H. J. Neurochem. (1984) [Pubmed]
  27. Metabolism of catecholamines by catechol-O-methyltransferase in cells expressing recombinant catecholamine transporters. Eshleman, A.J., Stewart, E., Evenson, A.K., Mason, J.N., Blakely, R.D., Janowsky, A., Neve, K.A. J. Neurochem. (1997) [Pubmed]
  28. Human kidney thiopurine methyltransferase. Purification and biochemical properties. Woodson, L.C., Weinshilboum, R.M. Biochem. Pharmacol. (1983) [Pubmed]
  29. Inhibition of catechol-O-methyltransferase by 6,7-dihydroxy-3,4-dihydroisoquinolines related to dopamine: demonstration using liquid chromatography and a novel substrate for O-methylation. Cheng, B.Y., Origitano, T.C., Collins, M.A. J. Neurochem. (1987) [Pubmed]
  30. Interaction of tubulin with single ring analogues of colchicine. Andreu, J.M., Timasheff, S.N. Biochemistry (1982) [Pubmed]
  31. Oxymetric and spectrophotometric study of the ascorbate oxidase activity shown by frog epidermis tyrosinase. Ramón Ros, J., Rodríguez-López, J.N., Carlos Espín, J., Varón, R., García-Cánovas, F. Int. J. Biochem. Cell Biol. (1996) [Pubmed]
  32. Effect of unlabeled indium oxine and indium tropolone on the function of isolated human lymphocytes. Signore, A., Sensi, M., Pozzilli, C., Negri, M., Lenzi, G.L., Pozzilli, P. J. Nucl. Med. (1985) [Pubmed]
  33. Possible activation of intracellular beta-adrenoceptors by extraneuronally accumulated isoprenaline in perfused rat heart. Magaribuchi, T., Kurahashi, K., Fujiwara, M. Naunyn Schmiedebergs Arch. Pharmacol. (1988) [Pubmed]
  34. Comparison of sulphur-mode and tin-mode flame photometric detectors for the gas chromatographic determination of organotin compounds. Ohhira, S., Matsui, H. J. Chromatogr. (1991) [Pubmed]
  35. Quantitation of comparative thrombogenicity of dog, pig, and human platelets in a hemodialyzer. Dewanjee, M.K., Kapadvanjwala, M., Sanchez, A., Elson, R., Serafini, A.N., Zilleruelo, G.E., Sfakianakis, G.N. ASAIO journal (American Society for Artificial Internal Organs : 1992) (1992) [Pubmed]
  36. Feedback regulation of beta-thujaplicin production and formation of its methyl ether in a suspension culture of Cupressus lusitanica. Yamada, J., Fujita, K., Sakai, K. Phytochemistry (2002) [Pubmed]
 
WikiGenes - Universities