The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Fibrinolytic mechanism, biochemistry, and preclinical pharmacology of recombinant prourokinase.

The purpose of this review is to provide a biochemical characterization of recombinant prourokinase (r-ProUK [ABT-187]), including a description of its clot-specific fibrinolytic mechanism. In addition, the preclinical data will be briefly reviewed, demonstrating the efficacy of r-ProUK as a potent therapeutic plasminogen activator. r-ProUK was purified to homogeneity from the culture medium of SP2/0 mouse hybridoma cells. The fibrinolytic potency of r-ProUK was characterized by both in vitro clot lysis experiments in human plasma and a canine femoral artery thrombosis model. In the in vitro clot lysis system, with use of clots prepared from fresh frozen human plasma, r-ProUK exhibits a lag phase to the onset of lysis and a concentration-dependent threshold effect due to the presence of the inhibitors alpha 2-antiplasmin and plasminogen activator inhibitor ( PAI-1). Effective clot lysis can be achieved without degradation of the fibrinogen in the surrounding plasma. Over a dose range of 50,000-220,000 IU, the canine femoral artery thrombosis model shows a dose-dependent relationship for r-ProUK and effective clot lysis. The lytic activity of r-ProUK is significantly enhanced in this model by the concomitant administration of heparin as an adjunctive agent for thrombolytic treatment. Fibrinogen, plasminogen, and alpha 2-antiplasmin levels in the systemic circulation were unaltered during the 30-minute infusion period and a 4-hour observation period, in which 85% lysis was achieved with r-ProUK (100,000 IU) and heparin. Moreover, restoration of blood flow in the previously fully occluded femoral artery was achieved within minutes of the start of the r-ProUK infusion. The experimental findings presented here are consistent with the clot-specific fibrinolytic mechanism of r-ProUK. Effective clot lysis can be achieved without alteration of the systemic coagulation and fibrinolytic parameters.[1]

References

  1. Fibrinolytic mechanism, biochemistry, and preclinical pharmacology of recombinant prourokinase. Credo, R.B., Burke, S.E. Journal of vascular and interventional radiology : JVIR. (1995) [Pubmed]
 
WikiGenes - Universities