The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Multiple open channel states revealed by lidocaine and QX-314 on rat brain voltage-dependent sodium channels.

We have recently reported that brain sodium channels display periods with high (low-Kd) and low (high-Kd) levels of lidocaine-induced open channel block (Salazar, B.C., D.O. Flash, J.L. Walewski, and E. Recio-Pinto. 1995. Brain Res. 699:305-314). In the present study, we further characterize this phenomenon by studying the effects of the permanently charged lidocaine analogue, QX-314. We found that the detection of high- and low-Kd periods does not require the presence of the uncharged form of lidocaine. The level of block, for either period, at various QX-314 concentrations indicated the presence of a single local anesthetic binding site. Increasing the concentration of QX-314 decreased the lifetime of the high-Kd periods while it increased the lifetime of the low-Kd periods. These results could be best fitted to a model with two open channel conformations that display different local anesthetic Kd values (low and high Kd), and in which the channel area defining the local anesthetic Kd consists of multiple interacting regions. Amplitude distribution analysis showed that changes in the Kd values reflected changes in the kon rates, without changes in the koff rates. Both lidocaine and QX-314 were found to be incapable of blocking small-channel subconductance states (5-6 pS). Changes in the local anesthetic kon rates for blocking the fully open state and the lack of local anesthetic block of the small subconductance state are consistent with the presence of channel conformational changes involving the intracellular permeation pathway leading to the local anesthetic binding site.[1]


  1. Multiple open channel states revealed by lidocaine and QX-314 on rat brain voltage-dependent sodium channels. Salazar, B.C., Castillo, C., Díaz, M.E., Recio-Pinto, E. J. Gen. Physiol. (1996) [Pubmed]
WikiGenes - Universities