The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Rapid oxidation of DL-selenomethionine by peroxynitrite.

Peroxynitrite, the reaction product of nitric oxide and superoxide, rapidly oxidizes DL-selenomethionine (MetSe) with overall second-order kinetics, first-order in peroxynitrite and first-order in MetSe. The oxidation of MetSe by peroxynitrite goes by two competing mechanism. The first produces ethylene by what we propose to be a one-electron oxidation of MetSe. In the second mechanism, MetSe undergoes a two-electron oxidation that gives methionine selenoxide (MetSe = O); the apparent second-order rate constant, k2(app), for this process is (2.4 +/- 0.1) x 10(3) M-1s-1 at pH 7.4 and 25 degrees C. The kinetic modeling of the experimental data suggests that both peroxynitrous acid (k2 = 20,460 +/- 440 M-1s-1 at 25 degrees C) and the peroxynitrite anion (k3 = 200 +/- 170 M-1s-1 at 25 degrees C) are involved in the second-order reaction leading to selenoxide. These rate constants are 10- to 1,000-fold higher than those for the reactions of methionine (Met) with peroxynitrite. With increasing concentrations of MetSe at pH 7.4, the yield of ethylene decreases, while that of MetSe = O increases, suggesting that the reactions leading to ethylene and selenoxide have different kinetic orders. These results are analogous to those we previously reported for methionine and 2-keto-4-thiomethylbutanoic acid (KTBA),where ethylene is produced in a first-order reaction and sulfoxide in a second-order reaction. Therefore, we suggest that the reaction of peryoxynitrite with MetSe involves a mechanism similar to that we proposed for Met, in which an activated intermediate of peroxynitrous acid (HOONO) is the one-electron oxidant and reacts with first-order kinetics and ground-state peroxynitrite is the two-electron oxidant and reacts with second-order kinetics.[1]

References

  1. Rapid oxidation of DL-selenomethionine by peroxynitrite. Padmaja, S., Squadrito, G.L., Lemercier, J.N., Cueto, R., Pryor, W.A. Free Radic. Biol. Med. (1996) [Pubmed]
 
WikiGenes - Universities