Increase in glutathione peroxidase activity in malaria parasite after selenium supplementation.
Glutathione peroxidase ( GPx), a key enzyme involved in the detoxification of many peroxides, has been investigated in two malaria parasite species: P. yoelii in vivo (murine malaria) and P. falciparum in vitro (human malaria). We demonstrate the presence of an endogenous GPx activity in these two Plasmodia species. Enzymatic assays and the use of specific substrates and inhibitors allowed us to determine that the activity is selenium dependent. As this activity was shown to be lower in P. falciparum than in P. yoelii, and selenium levels were found to be low in culture medium and culture red blood cells, we hypothesized that a severe selenium deficiency could be responsible for this difference. After selenium supplementation, with either sodium selenite or selenocystine, we observed an increase in growth of P. falciparum only in with sodium selenite, whereas higher GPx activities were noted in parasites grown in media supplemented with both. An increase in GPx activities was also observed in parasites that had undergone an experimental oxidative stress with TBOOH. As the erythrocyte is unable to synthesize new proteins, these results provide further evidence for the existence of an endogenous parasitic selenium-dependent glutathione peroxidase.[1]References
- Increase in glutathione peroxidase activity in malaria parasite after selenium supplementation. Gamain, B., Arnaud, J., Favier, A., Camus, D., Dive, D., Slomianny, C. Free Radic. Biol. Med. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg