The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Involvement of topoisomerase IV and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniae.

Ciprofloxacin-resistant mutants of Streptococcus pneumoniae 7785 were generated by stepwise selection at increasing drug concentrations. Sequence analysis of PCR products from the strains was used to examine the quinolone resistance-determining regions of the GyrA and GyrB proteins of DNA gyrase and the analogous regions of the ParC and ParE subunits of DNA topoisomerase IV. First-step mutants exhibiting low-level resistance had no detectable changes in their topoisomerase quinolone resistance-determining regions, suggesting altered permeation or another novel resistance mechanism. Nine of 10 second-step mutants exhibited an alteration in ParC at Ser-79 to Tyr or Phe or at Ala-84 to Thr. Third- and fourth-step mutants displaying high-level ciprofloxacin resistance were found to have, in addition to the ParC alteration, a change in GyrA at residues equivalent to Escherichia coli GyrA resistance hot spots Ser-83 and Asp-87 or in GyrB at Asp-435 to Asn, equivalent to E. coli Asp-426, part of a highly conserved EGDSA motif in GyrB. No ParE changes were observed. Complementary analysis of two S. pneumoniae clinical isolates displaying low-level resistance to ciprofloxacin revealed a ParC change at Ser-79 to Phe or Arg-95 to Cys but no changes in GyrA, GyrB, or ParE. A highly resistant isolate, in addition to a ParC mutation, had a GyrA alteration at the residue equivalent to E. coli Asp-87. Thus, in both laboratory strains and clinical isolates, ParC mutations preceded those in GyrA, suggesting that topoisomerase IV is a primary topoisomerase target and gyrase is a secondary target for ciprofloxacin in S. pneumoniae.[1]

References

  1. Involvement of topoisomerase IV and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniae. Pan, X.S., Ambler, J., Mehtar, S., Fisher, L.M. Antimicrob. Agents Chemother. (1996) [Pubmed]
 
WikiGenes - Universities