The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

RNase H-independent antisense activity of oligonucleotide N3 '--> P5 ' phosphoramidates.

Oligonucleotide N3'-->P5'phosphoramidates are a new and promising class of antisense agents. Here we report biological properties of phosphoramidate oligonucleotides targeted against the human T cell leukemia virus type-I Tax protein, the major transcriptional transactivator of this human retrovirus. Isosequential phosphorothioate oligodeoxynucleotides and uniformly modified and chimeric phosphoramidate oligodeoxynucleotides containing six central phosphodiester linkages are all quite stable in cell nuclei. The uniformly modified anti-tax phosphoramidate oligodeoxynucleotide does not activate nuclear RNase H, as was shown by RNase protection assay. In contrast, the chimeric phosphoramidate-phosphodiester oligodeoxynucleotide is an efficient activator of RNase H. The presence of one or two mismatched nucleotides in the phosphodiester portion of oligonucleotides affected this activation only negligibly. When introduced into tax-transformed fibroblasts ex vivo, only the uniformly modified anti-tax phosphoramidate oligodeoxynucleotide caused a sequence-dependent reduction in the Tax protein level. Neither the chimeric phosphoramidate nor the phosphorothioate oligodeoxynucleotides significantly reduced tax expression under similar experimental conditions.[1]

References

  1. RNase H-independent antisense activity of oligonucleotide N3 '--> P5 ' phosphoramidates. Heidenreich, O., Gryaznov, S., Nerenberg, M. Nucleic Acids Res. (1997) [Pubmed]
 
WikiGenes - Universities