Pleiotropic effects of a disrupted K+ channel gene: reduced body weight, impaired motor skill and muscle contraction, but no seizures.
To investigate the roles of K+ channels in the regulation and fine-tuning of cellular excitability, we generated a mutant mouse carrying a disrupted gene for the fast activating, voltage-gated K+ channel Kv3. 1. Kv3.1-/- mice are viable and fertile but have significantly reduced body weights compared with their Kv3.1+/- littermates. Wild-type, heterozygous, and homozygous Kv3.1 channel-deficient mice exhibit similar spontaneous locomotor and exploratory activity. In a test for coordinated motor skill, however, homozygous Kv3.1-/- mice perform significantly worse than their heterozygous Kv3.1+/- or wild-type littermates. Both fast and slow skeletal muscles of Kv3.1-/- mice are slower to reach peak force and to relax after contraction, consequently leading to tetanic responses at lower stimulation frequencies. Both mutant muscles generate significantly smaller contractile forces during a single twitch and during tetanic conditions. Although Kv3.1-/- mutants exhibit a normal auditory frequency range, they show significant differences in their acoustic startle responses. Contrary to expectation, homozygous Kv3.1-/- mice do not have increased spontaneous seizure activity.[1]References
- Pleiotropic effects of a disrupted K+ channel gene: reduced body weight, impaired motor skill and muscle contraction, but no seizures. Ho, C.S., Grange, R.W., Joho, R.H. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg