The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Functional analysis of the fission yeast Prp4 protein kinase involved in pre-mRNA splicing and isolation of a putative mammalian homologue.

The prp4 gene of Schizosaccharomyces pombe encodes a protein kinase. A physiological substrate is not yet known. A mutational analysis of prp4 revealed that the protein consists of a short N-terminal domain, containing several essential motifs, which is followed by the kinase catalytic domain comprising the C-terminus of the protein. Overexpression of N-terminal mutations disturbs mitosis and produces elongated cells, Using a PCR approach, we isolated a putative homologue of Prp4 from human and mouse cells. The mammalian kinase domain is 53% identical to the kinase domain of Prp4. The short N-terminal domains share <20% identical amino acids, but contain conserved motifs. A fusion protein consisting of the N-terminal region from S. pombe followed by the mammalian kinase domain complements a temperature-sensitive prp4 mutation of S. pombe. Prp4 and the recombinant yeast/mouse protein kinase phosphorylate the human SR splicing factor ASF/SF2 in vitro in its RS domain.[1]

References

  1. Functional analysis of the fission yeast Prp4 protein kinase involved in pre-mRNA splicing and isolation of a putative mammalian homologue. Gross, T., Lützelberger, M., Weigmann, H., Klingenhoff, A., Shenoy, S., Käufer, N.F. Nucleic Acids Res. (1997) [Pubmed]
 
WikiGenes - Universities