The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin.

Clostridium difficile toxin B that is one of the largest cytotoxins (270 kDa) known acts on Rho subfamily proteins by monoglucosylation (Just, I., Selzer, J., Wilm, M., von Eichel-Streiber, C., Mann, M., and Aktories, K. (1995) Nature 375, 500-503). By deletion analysis we identified the enzyme and cytotoxic activity of the toxin to be located at the N terminus of the holotoxin. A 63-kDa fragment of toxin B covering the first 546 amino acid residues glucosylated Rho, Rac, and Cdc42, but not Ras, by using UDP-glucose as a cosubstrate. As known for the holotoxin, glucosylation by the toxin fragment was favored with the GDP-bound form of the low molecular mass GTPases. Microinjection of the toxin fragment into NIH-3T3 cells induced rounding up of cells and redistribution of the actin cytoskeleton. In contrast, a toxin fragment encompassing the first 516 amino acid residues was at least 1000-fold less active than toxin fragment 1-546 and cytotoxically inactive. The data give direct evidence for location of the enzyme activity of C. difficile toxin B at the N-terminal 546 amino acids residues and indicate a functionally and/or structurally important role of the region from amino acid residues 516 through 546 for enzyme and cytotoxic activities.[1]

References

  1. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. Hofmann, F., Busch, C., Prepens, U., Just, I., Aktories, K. J. Biol. Chem. (1997) [Pubmed]
 
WikiGenes - Universities