The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A topological model for the general aromatic amino acid permease, AroP, of Escherichia coli.

The general aromatic amino acid permease, AroP, of Escherichia coli is responsible for the active transport of phenylalanine, tyrosine, and tryptophan. A proposed topological model for the AroP permease, consisting of 12 hydrophobic transmembrane spans connected by hydrophilic loops, is very similar to that of the closely related phenylalanine-specific permease. The validity of this model and its similarity to that of the PheP permease were investigated by studying fusion proteins of AroP permease and alkaline phosphatase. Based on the results obtained from the AroP-alkaline phosphatase sandwich fusions, we have significantly revised the proposed topological model for AroP in two regions. In this modified AroP topological model, the three charged residues E151, E153, and K160 are repositioned within the membrane in span 5. These three residues are conserved in a large family of amino acid transport proteins, and site-directed mutagenesis identifies them as being essential for transport activity. It is postulated that these residues together with E110 in transmembrane span 3 may be involved in a proton relay system.[1]

References

 
WikiGenes - Universities