The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Exploring subunit-subunit interactions in the Escherichia coli bo-type ubiquinol oxidase by extragenic suppressor mutation analysis.

Cytochrome bo-type ubiquinol oxidase is a four-subunit heme-copper terminal oxidase and functions as a redox-coupled proton pump in the aerobic respiratory chain of Escherichia coli. On the basis of deletion and chemical cross-linking analyses on subunit IV, we proposed that subunit IV is essential for CuB binding to subunit I and that it is present in a cleft between subunits I and III (Saiki, K., Nakamura, H., Mogi, T., and Anraku, Y. (1996) J. Biol. Chem. 271, 15336-15340). To extend previous studies, we carried out alanine-scanning mutagenesis for selected 16-amino acid residues in subunit IV to explore subunit-subunit interactions in bo-type ubiquinol oxidase. We found that only the replacement of Phe83 in helix III resulted in the reduction of the catalytic activity but that this did not significantly affect the UV-visible spectroscopic properties and the copper content. This suggests that individual amino acid substitutions, including the six invariant residues, are not enough to alter such properties of the metal centers. Extragenic suppressor mutations were isolated for the Phe83 --> Ala mutation of subunit IV and identified as missense mutations in helices VII and VIII in subunit I. These observations provide further support for specific interactions of subunit IV with helix VII and/or VIII, the CuB binding domain, of subunit I and suggest that subunit IV functions as a domain-specific molecular chaperon in the oxidase complex.[1]

References

 
WikiGenes - Universities