The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

1,2-Diarylpyrroles as potent and selective inhibitors of cyclooxygenase-2.

Series of 1,2-diarylpyrroles has been synthesized and found to contain very potent and selective inhibitors of the human cyclooxygenase-2 ( COX-2) enzyme. The paper describes short and practical syntheses of the target molecules utilizing the Paal-Knorr reaction. Electrophilic substitution on 1 proceeds in a regioselective fashion, and the method was used to generate a number of tetrasubstituted pyrroles. Detailed SAR on the series has been studied by modifications of the aryl rings and the substituents in the pyrrole ring. Diarylpyrrole 1 is a very potent ( COX-2, IC50 = 60 nm) and selective ( COX-1/ COX-2 = > 1700) inhibitor whereas the isomeric 2 is completely inactive against COX-2. Modifications of the substituents on the fluorophenyl ring in 1 yields very potent inhibitors of COX-2 (IC50 = 40-80 nm) with excellent selectivity (1200 to > 2500) vs COX-1. Analog 20 containing a sulfonamide group is an excellent inhibitor of COX-2 with an IC50 of 14 nm. Tetrasubstituted pyrroles containing groups such as COCF3, SO2CF3, or CH2OAr at position 3 in the pyrrole ring give excellent inhibitors ( COX-2, IC50 = 30-120 nm). In vivo testing in the carrageenan-induced paw edema model in the rat establishes that the 1,2-diarylpyrroles are orally active antiinflammatory agents. Compound 3 is the most potent inhibitor of edema with an ED50 of 4.7 mpk.[1]


  1. 1,2-Diarylpyrroles as potent and selective inhibitors of cyclooxygenase-2. Khanna, I.K., Weier, R.M., Yu, Y., Collins, P.W., Miyashiro, J.M., Koboldt, C.M., Veenhuizen, A.W., Currie, J.L., Seibert, K., Isakson, P.C. J. Med. Chem. (1997) [Pubmed]
WikiGenes - Universities