The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Comparative evaluation of the in vitro micronucleus test and the in vitro chromosome aberration test: industrial experience.

Because of its rapidness, simplicity and potential for automation, the measurement of micronucleated cells in vivo is not only equivalent to the analysis of chromosome aberrations, but often even preferred within routine genotoxicity testing. In order to evaluate the correlation between the in vitro micronucleus assay ( MNT) and the in vitro chromosome aberration test (CA), we collected data from four pharmaceutical companies obtained either in Chinese hamster cell lines (CHO-K5, CHO-K1, V79) or in human peripheral blood lymphocytes. Among the 57 compounds included in this comparison, 45 compounds gave rise to concordant results in both assays (26 compounds negative in both assays; 19 compounds positive in both assays). The high percentage of concordance, i.e. about 79% is very promising and can be even increased to about 88% by omitting the 3 aneugenic compounds and 2 compounds inducing endoreduplicated chromosomes which were found positive only in the in vitro MNT. The results are remarkable in particular considering that most of the compounds evaluated are 'standard' pharmaceutical compounds and thus are at most weak inducers of chromosome damage. Our comparison strongly supports that the in vitro micronucleus test is a suitable alternative to the in vitro chromosome aberration assay. Moreover, the MNT has the potential of not only detecting clastogens but additionally aneuploidy inducing chemicals.[1]


  1. Comparative evaluation of the in vitro micronucleus test and the in vitro chromosome aberration test: industrial experience. Miller, B., Albertini, S., Locher, F., Thybaud, V., Lorge, E. Mutat. Res. (1997) [Pubmed]
WikiGenes - Universities