The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Brain asymmetry as a potential biomarker for developmental TCDD intoxication: a dose-response study.

Previous studies have indicated that in ovo exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds is correlated with the development of grossly asymmetric brains. This asymmetry is manifested as a difference between the two halves of the forebrain and the tecta. Previously, only wildlife species (heron, cormorant, and eagle) had been shown to manifest this response. In the wildlife studies, the frequency and degree of left-right interhemispheric differences had been correlated with the levels of polychlorinated dibenzo-p-dioxin toxic equivalency factors (TEFs) in eggs from the same nest (heron, cormorant). We studied the effect of in ovo exposure to TCDD on the brain throughout development in a sensitive laboratory model (chicken). Embryos from chicken eggs (Gallus gallus) injected with one of several doses of TCDD or vehicle control were sacrificed after 9, 11, 13, 15, 17, or 20 days of incubation, or incubated to hatch and then sacrificed either within 24 hr or at 3 weeks post-hatch. Measurements of both chicken embryo and hatchling brains indicated that 1) TCDD alone induced the brain asymmetry in developing chickens; 2) this brain asymmetry was similar to that observed in animals exposed in the wild to a mixture of TCDD-related contaminants; 3) there was a dose-related increase in both the frequency and severity of brain asymmetry observed at all ages measured; and 4) the asymmetry was measurable in embryonic brains at an age when the braincase was a thin, flexible layer (embryonic day 9), implying that the effect of TCDD was directly on the developing brain and not indirectly via an effect on the braincase.[1]

References

  1. Brain asymmetry as a potential biomarker for developmental TCDD intoxication: a dose-response study. Henshel, D.S., Martin, J.W., DeWitt, J.C. Environ. Health Perspect. (1997) [Pubmed]
 
WikiGenes - Universities