The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Prosencephalon

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Prosencephalon

 

Psychiatry related information on Prosencephalon

 

High impact information on Prosencephalon

  • Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP [11].
  • By contrast, mice in which both Creb1 and Crem are disrupted in the postnatal forebrain show progressive neurodegeneration in the hippocampus and in the dorsolateral striatum [12].
  • Male embryonic mice with mutations in the X-linked aristaless-related homeobox gene (Arx) developed with small brains due to suppressed proliferation and regional deficiencies in the forebrain [13].
  • Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans [13].
  • Thus, TGIF links the NODAL signalling pathway to the bifurcation of the human forebrain and the establishment of ventral midline structures [14].
 

Chemical compound and disease context of Prosencephalon

  • The neuroprotective effects of dizocilipine maleate (MK-801), a noncompetitive antagonist of the N-methyl-D-aspartate (NMDA) receptor/channel, were tested in the 4-vessel occlusion rat model of forebrain ischemia [15].
  • Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology [16].
  • The results show that cholinoceptive regions of the basal forebrain can increase wakefulness and reduce the ability of pontine carbachol to evoke the REM sleep-like state [17].
  • Blockade of tetrahydrobiopterin synthesis protects neurons after transient forebrain ischemia in rat: a novel role for the cofactor [18].
  • Our data establish a novel discovery that transient (10 min) global forebrain ischemia followed by reperfusion induces at least two distinct phases of fodrin proteolysis in hippocampus: an early phase in molecular layer and in stratum oriens of CA3 and CA1 sectors within 15 min and a late drastic and persistent phase in the entire CA1 after 4-24 h [19].
 

Biological context of Prosencephalon

 

Anatomical context of Prosencephalon

 

Associations of Prosencephalon with chemical compounds

  • Histopathology of brain sections revealed reduction and hypocellularity of the posterior pituitary of Ptprs-/- mice, as well as a reduction of approximately 50-75% in the number of choline acetyl transferase-positive cells in the forebrain [30].
  • Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion [31].
  • An important extrinsic source of cortical ACh innervation derives from neurones diffusely located in rat basal forebrain, denoted the nucleus basalis (NB) [32].
  • Here we show that overexpression of NMDA receptor 2B (NR2B) in the forebrains of transgenic mice leads to enhanced activation of NMDA receptors, facilitating synaptic potentiation in response to stimulation at 10-100 Hz [33].
  • We recently located a forebrain region from which seizures can be elicited by the GABA antagonist bicuculline, and now report that manipulations of excitatory amino acid transmission and cholinergic transmission can also elicit seizures from this site [34].
 

Gene context of Prosencephalon

  • Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube [35].
  • These data suggest an important role for Hesx1/HESX1 in forebrain, midline and pituitary development in mouse and human [20].
  • Neurons induced in explants derived from both diencephalic and telencephalic levels of the neural plate express the LIM homeodomain protein Isl-1, and these neurons possess distinct identities that match those of the ventral neurons generated in these two subdivisions of the forebrain in vivo [35].
  • The organizer factors Chordin and Noggin are required for mouse forebrain development [36].
  • A mouse gene related to Distal-less shows a restricted expression in the developing forebrain [37].
 

Analytical, diagnostic and therapeutic context of Prosencephalon

References

  1. Selective blockade of hypothalamic hyperphagia and obesity in rats by serotonin-depleting midbrain lesions. Coscina, D.V., Stancer, H.C. Science (1977) [Pubmed]
  2. Cerebral ischemia enhances polyamine oxidation: identification of enzymatically formed 3-aminopropanal as an endogenous mediator of neuronal and glial cell death. Ivanova, S., Botchkina, G.I., Al-Abed, Y., Meistrell, M., Batliwalla, F., Dubinsky, J.M., Iadecola, C., Wang, H., Gregersen, P.K., Eaton, J.W., Tracey, K.J. J. Exp. Med. (1998) [Pubmed]
  3. Forebrain pathways mediating stress-induced hormone secretion. Van de Kar, L.D., Blair, M.L. Frontiers in neuroendocrinology. (1999) [Pubmed]
  4. Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. Zhang, J., Piantadosi, C.A. J. Clin. Invest. (1992) [Pubmed]
  5. NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Higgins, G.A., Koh, S., Chen, K.S., Gage, F.H. Neuron (1989) [Pubmed]
  6. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Porkka-Heiskanen, T., Strecker, R.E., Thakkar, M., Bjorkum, A.A., Greene, R.W., McCarley, R.W. Science (1997) [Pubmed]
  7. The basal forebrain-cortical cholinergic system: interpreting the functional consequences of excitotoxic lesions. Dunnett, S.B., Everitt, B.J., Robbins, T.W. Trends Neurosci. (1991) [Pubmed]
  8. Nerve growth factor potentiates the neurotoxicity of beta amyloid. Yankner, B.A., Caceres, A., Duffy, L.K. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  9. Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. Anderson, C.M., Polcari, A., Lowen, S.B., Renshaw, P.F., Teicher, M.H. The American journal of psychiatry. (2002) [Pubmed]
  10. Aging, Alzheimer's disease, and the cholinergic system of the basal forebrain. McGeer, P.L., McGeer, E.G., Suzuki, J., Dolman, C.E., Nagai, T. Neurology (1984) [Pubmed]
  11. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Kelleher, R.J., Govindarajan, A., Jung, H.Y., Kang, H., Tonegawa, S. Cell (2004) [Pubmed]
  12. Disruption of CREB function in brain leads to neurodegeneration. Mantamadiotis, T., Lemberger, T., Bleckmann, S.C., Kern, H., Kretz, O., Martin Villalba, A., Tronche, F., Kellendonk, C., Gau, D., Kapfhammer, J., Otto, C., Schmid, W., Schütz, G. Nat. Genet. (2002) [Pubmed]
  13. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Kitamura, K., Yanazawa, M., Sugiyama, N., Miura, H., Iizuka-Kogo, A., Kusaka, M., Omichi, K., Suzuki, R., Kato-Fukui, Y., Kamiirisa, K., Matsuo, M., Kamijo, S., Kasahara, M., Yoshioka, H., Ogata, T., Fukuda, T., Kondo, I., Kato, M., Dobyns, W.B., Yokoyama, M., Morohashi, K. Nat. Genet. (2002) [Pubmed]
  14. Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Gripp, K.W., Wotton, D., Edwards, M.C., Roessler, E., Ades, L., Meinecke, P., Richieri-Costa, A., Zackai, E.H., Massagué, J., Muenke, M., Elledge, S.J. Nat. Genet. (2000) [Pubmed]
  15. The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats. Buchan, A., Li, H., Pulsinelli, W.A. J. Neurosci. (1991) [Pubmed]
  16. Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology. Ginsberg, M.D., Graham, D.I., Busto, R. Ann. Neurol. (1985) [Pubmed]
  17. Simultaneous pontine and basal forebrain microinjections of carbachol suppress REM sleep. Baghdoyan, H.A., Spotts, J.L., Snyder, S.G. J. Neurosci. (1993) [Pubmed]
  18. Blockade of tetrahydrobiopterin synthesis protects neurons after transient forebrain ischemia in rat: a novel role for the cofactor. Cho, S., Volpe, B.T., Bae, Y., Hwang, O., Choi, H.J., Gal, J., Park, L.C., Chu, C.K., Du, J., Joh, T.H. J. Neurosci. (1999) [Pubmed]
  19. Spatial resolution of fodrin proteolysis in postischemic brain. Saido, T.C., Yokota, M., Nagao, S., Yamaura, I., Tani, E., Tsuchiya, T., Suzuki, K., Kawashima, S. J. Biol. Chem. (1993) [Pubmed]
  20. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Dattani, M.T., Martinez-Barbera, J.P., Thomas, P.Q., Brickman, J.M., Gupta, R., Mårtensson, I.L., Toresson, H., Fox, M., Wales, J.K., Hindmarsh, P.C., Krauss, S., Beddington, R.S., Robinson, I.C. Nat. Genet. (1998) [Pubmed]
  21. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Abel, T., Nguyen, P.V., Barad, M., Deuel, T.A., Kandel, E.R., Bourtchouladze, R. Cell (1997) [Pubmed]
  22. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Schoch, S., Deák, F., Königstorfer, A., Mozhayeva, M., Sara, Y., Südhof, T.C., Kavalali, E.T. Science (2001) [Pubmed]
  23. Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. Qiu, M., Bulfone, A., Martinez, S., Meneses, J.J., Shimamura, K., Pedersen, R.A., Rubenstein, J.L. Genes Dev. (1995) [Pubmed]
  24. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Kimura, S., Hara, Y., Pineau, T., Fernandez-Salguero, P., Fox, C.H., Ward, J.M., Gonzalez, F.J. Genes Dev. (1996) [Pubmed]
  25. A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Millet, S., Campbell, K., Epstein, D.J., Losos, K., Harris, E., Joyner, A.L. Nature (1999) [Pubmed]
  26. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. McDonald, J.W., Althomsons, S.P., Hyrc, K.L., Choi, D.W., Goldberg, M.P. Nat. Med. (1998) [Pubmed]
  27. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Tuszynski, M.H., Thal, L., Pay, M., Salmon, D.P., U, H.S., Bakay, R., Patel, P., Blesch, A., Vahlsing, H.L., Ho, G., Tong, G., Potkin, S.G., Fallon, J., Hansen, L., Mufson, E.J., Kordower, J.H., Gall, C., Conner, J. Nat. Med. (2005) [Pubmed]
  28. Induction of dopaminergic neuron phenotype in the midbrain by Sonic hedgehog protein. Wang, M.Z., Jin, P., Bumcrot, D.A., Marigo, V., McMahon, A.P., Wang, E.A., Woolf, T., Pang, K. Nat. Med. (1995) [Pubmed]
  29. Different brain areas mediate the analgesic and epileptic properties of enkephalin. Frenk, H., McCarty, B.C., Liebeskind, J.C. Science (1978) [Pubmed]
  30. Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPsigma. Wallace, M.J., Batt, J., Fladd, C.A., Henderson, J.T., Skarnes, W., Rotin, D. Nat. Genet. (1999) [Pubmed]
  31. Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Delfs, J.M., Zhu, Y., Druhan, J.P., Aston-Jones, G. Nature (2000) [Pubmed]
  32. Age-impaired impulse flow from nucleus basalis to cortex. Aston-Jones, G., Rogers, J., Shaver, R.D., Dinan, T.G., Moss, D.E. Nature (1985) [Pubmed]
  33. Genetic enhancement of learning and memory in mice. Tang, Y.P., Shimizu, E., Dube, G.R., Rampon, C., Kerchner, G.A., Zhuo, M., Liu, G., Tsien, J.Z. Nature (1999) [Pubmed]
  34. A crucial epileptogenic site in the deep prepiriform cortex. Piredda, S., Gale, K. Nature (1985) [Pubmed]
  35. Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Ericson, J., Muhr, J., Placzek, M., Lints, T., Jessell, T.M., Edlund, T. Cell (1995) [Pubmed]
  36. The organizer factors Chordin and Noggin are required for mouse forebrain development. Bachiller, D., Klingensmith, J., Kemp, C., Belo, J.A., Anderson, R.M., May, S.R., McMahon, J.A., McMahon, A.P., Harland, R.M., Rossant, J., De Robertis, E.M. Nature (2000) [Pubmed]
  37. A mouse gene related to Distal-less shows a restricted expression in the developing forebrain. Price, M., Lemaistre, M., Pischetola, M., Di Lauro, R., Duboule, D. Nature (1991) [Pubmed]
  38. Effect of minor tranquillisers on hippocampal theta rhythm mimicked by depletion of forebrain noradrenaline. Gray, J.A., McNaughton, N., James, D.T., Kelly, P.H. Nature (1975) [Pubmed]
  39. The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. Bérubé, N.G., Mangelsdorf, M., Jagla, M., Vanderluit, J., Garrick, D., Gibbons, R.J., Higgs, D.R., Slack, R.S., Picketts, D.J. J. Clin. Invest. (2005) [Pubmed]
  40. Leptin action in the forebrain regulates the hindbrain response to satiety signals. Morton, G.J., Blevins, J.E., Williams, D.L., Niswender, K.D., Gelling, R.W., Rhodes, C.J., Baskin, D.G., Schwartz, M.W. J. Clin. Invest. (2005) [Pubmed]
  41. Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Young, W.S., Bonner, T.I., Brann, M.R. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
 
WikiGenes - Universities