The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Further characterization of Escherichia coli endonuclease V. Mechanism of recognition for deoxyinosine, deoxyuridine, and base mismatches in DNA.

Endonuclease V from Escherichia coli has a wide substrate spectrum. In addition to deoxyinosine-containing DNA, the enzyme cleaves DNA containing urea residues, AP sites, base mismatches, insertion/deletion mismatches, flaps, and pseudo-Y structures. The gene coding for the enzyme was identified to be orf 225 or nfi (endonuclease five). Using enzyme purified from an overproducing strain, the deoxyinosine- and mismatch-specific activities of endonuclease V was found to have different divalent metal requirements. The affinity of the enzyme is greater than 20-fold higher for DNA containing deoxyinosine than deoxynebularine or base mismatches. Under optimal cleavage conditions, endonuclease V forms two stable complexes with DNA containing deoxyinosine, but not with DNA containing base mismatches or deoxynebularine, suggesting that the 6-keto group of hypoxanthine in DNA is critical for stable interactions with the protein. The enzyme recognizes deoxyuridine in DNA but exhibits a much lower affinity to DNA containing deoxyuridine compared with DNA containing deoxyinosine. Interestingly, deoxyuridine-specific endonuclease activity of endonuclease V has a divalent metal requirement similar to the mismatch activity. A model for the mechanism of substrate recognition is proposed to explain these different activities.[1]

References

 
WikiGenes - Universities