The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Lysine-overproducing mutants of Saccharomyces cerevisiae baker's yeast isolated in continuous culture.

Saccharomyces cerevisiae baker's yeast mutants which produce 3 to 17 times as much lysine as the wild type, depending on the nitrogen source, have been selected. The baker's yeast strain was growth in a pH-regulated chemostat in minimal medium with proline as the nitrogen source, supplemented with increasing concentrations of the toxic analog of the lysine S-2-aminoethyl-L-cysteine (AEC). The lysine-overproducing mutants, which were isolated as AEC-resistant mutants, were also resistant to high external concentrations of lysine and to alpha-aminoadipate and seemed to be affected in the lysine biosynthetic pathway but not in the biosynthetic pathways of other amino acids. Lysine overproduction by one of the mutants seemed to be due to, at least, the loss of repression of the homocitrate synthase encoded by the LYS20 gene. The mutant grew slower than the wild type, and its dough-raising capacity was reduced in in vitro assays, probably due to the toxic effects of lysine accumulation or of an intermediate produced in the pathway. This mutant can be added as a food supplement to enrich the nutritive qualities of bakery products, and its resistance to alpha-aminoadipate, AEC, and lysine can be used as a dominant marker.[1]

References

  1. Lysine-overproducing mutants of Saccharomyces cerevisiae baker's yeast isolated in continuous culture. Gasent-Ramírez, J.M., Benítez, T. Appl. Environ. Microbiol. (1997) [Pubmed]
 
WikiGenes - Universities