The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Alzheimer's disease: a re-examination of the amyloid hypothesis.

Alzheimer's disease (AD) is a neurodegenerative disorder of the brain characterized by the presence of neuritic amyloid plaques and neurofibrillary tangles. Although it most frequently occurs in the elderly, this disorder also afflicts younger patients. The majority of AD cases are late in onset, lack an obvious genetic etiology and are characterized as sporadic, whereas a small percentage of cases are early in onset and segregate strongly within families (FAD), suggesting a genetic etiology. During the past decade it has become evident that the clinical and histopathological phenotypes of this disease are caused by heterogeneous genetic, and probably environmental, factors. Indeed, several genes have been identified that together appear to cause most of the familial forms of the disease, whereas the epsilon4 allele of the apolipoprotein E (apoE) gene has been shown to be a significant risk factor for the late onset forms of AD. Despite this evidence of heterogeneity, it has been suggested that all of these factors work through a common pathway by triggering the deposition of amyloid in the brain, which is ultimately responsible for the neuronal degeneration of AD. This is a controversial theory, however, primarily because there is a poor correlation between the concentrations and distribution of amyloid depositions in the brain and several parameters of AD pathology, including degree of dementia, loss of synapses, loss of neurons and abnormalities of the cytoskeleton.[1]

References

  1. Alzheimer's disease: a re-examination of the amyloid hypothesis. Neve, R.L., Robakis, N.K. Trends Neurosci. (1998) [Pubmed]
 
WikiGenes - Universities