Evidence for a physical interaction between the Escherichia coli methyl-directed mismatch repair proteins MutL and UvrD.
UvrD (DNA helicase II) is an essential component of two major DNA repair pathways in Escherichia coli: methyl-directed mismatch repair and UvrABC-mediated nucleotide excision repair. In addition, it has an undefined role in the RecF recombination pathway and possibly in replication. In an effort to better understand the role of UvrD in these various aspects of DNA metabolism, a yeast two-hybrid screen was used to search for interacting protein partners. Screening of an E.coli genomic library revealed a potential interaction between UvrD and MutL, a component of the methyl-directed mismatch repair pathway. The interaction was confirmed by affinity chromatography using purified proteins. Deletion analysis demonstrated that the C-terminal 218 amino acids (residues 398-615) of MutL were sufficient to produce the two-hybrid interaction with UvrD. On the other hand, both the N- and C-termini of UvrD were required for interaction with MutL. The implications of this interaction for the mismatch repair mechanism are discussed.[1]References
- Evidence for a physical interaction between the Escherichia coli methyl-directed mismatch repair proteins MutL and UvrD. Hall, M.C., Jordan, J.R., Matson, S.W. EMBO J. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg