The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

ECs3688  -  DNA mismatch repair protein

Escherichia coli O157:H7 str. Sakai

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ECs3688

 

High impact information on ECs3688

 

Chemical compound and disease context of ECs3688

 

Biological context of ECs3688

 

Associations of ECs3688 with chemical compounds

  • Our data show that the intermediates of uracil repair cannot substitute for the strand-discrimination signals generated by the MutH protein, which is thought to initiate the methyl-directed mismatch repair process by nicking the unmethylated strand of a newly-synthesized DNA duplex at d(GATC) sites [11].
 

Other interactions of ECs3688

 

Analytical, diagnostic and therapeutic context of ECs3688

References

  1. Evidence for a physical interaction between the Escherichia coli methyl-directed mismatch repair proteins MutL and UvrD. Hall, M.C., Jordan, J.R., Matson, S.W. EMBO J. (1998) [Pubmed]
  2. Altering the conserved nucleotide binding motif in the Salmonella typhimurium MutS mismatch repair protein affects both its ATPase and mismatch binding activities. Haber, L.T., Walker, G.C. EMBO J. (1991) [Pubmed]
  3. Cooperation and competition in mismatch repair: very short-patch repair and methyl-directed mismatch repair in Escherichia coli. Bhagwat, A.S., Lieb, M. Mol. Microbiol. (2002) [Pubmed]
  4. A genetic analysis of primary products of bacteriophage lambda recombination. Huisman, O., Fox, M.S. Genetics (1986) [Pubmed]
  5. Demonstration and characterization of mutations induced by Helicobacter pylori organisms in gastric epithelial cells. Yao, Y., Tao, H., Park, D.I., Sepulveda, J.L., Sepulveda, A.R. Helicobacter (2006) [Pubmed]
  6. High mutation frequencies among Escherichia coli and Salmonella pathogens. LeClerc, J.E., Li, B., Payne, W.L., Cebula, T.A. Science (1996) [Pubmed]
  7. Mutation detection with MutH, MutL, and MutS mismatch repair proteins. Smith, J., Modrich, P. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  8. Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate. Lovett, S.T., Feschenko, V.V. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  9. Escherichia coli DNA helicase II (uvrD gene product) catalyzes the unwinding of DNA.RNA hybrids in vitro. Matson, S.W. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  10. Redundant exonuclease involvement in Escherichia coli methyl-directed mismatch repair. Viswanathan, M., Burdett, V., Baitinger, C., Modrich, P., Lovett, S.T. J. Biol. Chem. (2001) [Pubmed]
  11. Effect of uracil situated in the vicinity of a mispair on the directionality of mismatch correction in Escherichia coli. Aprelikova, O., Jiricny, J. Nucleic Acids Res. (1991) [Pubmed]
  12. Response of repair-competent and repair-deficient Escherichia coli to three O6-substituted guanines and involvement of methyl-directed mismatch repair in the processing of O6-methylguanine residues. Pauly, G.T., Hughes, S.H., Moschel, R.C. Biochemistry (1994) [Pubmed]
  13. Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Pukkila, P.J., Peterson, J., Herman, G., Modrich, P., Meselson, M. Genetics (1983) [Pubmed]
  14. MutL-catalyzed ATP hydrolysis is required at a post-UvrD loading step in methyl-directed mismatch repair. Robertson, A.B., Pattishall, S.R., Gibbons, E.A., Matson, S.W. J. Biol. Chem. (2006) [Pubmed]
  15. Mispair specificity of methyl-directed DNA mismatch correction in vitro. Su, S.S., Lahue, R.S., Au, K.G., Modrich, P. J. Biol. Chem. (1988) [Pubmed]
  16. A dominant negative allele of the Escherichia coli uvrD gene encoding DNA helicase II. A biochemical and genetic characterization. George, J.W., Brosh, R.M., Matson, S.W. J. Mol. Biol. (1994) [Pubmed]
  17. Length of CTG.CAG repeats determines the influence of mismatch repair on genetic instability. Parniewski, P., Jaworski, A., Wells, R.D., Bowater, R.P. J. Mol. Biol. (2000) [Pubmed]
  18. Site-specific frame-shift mutagenesis by the 1-nitropyrene-DNA adduct N-(deoxyguanosin-8-y1)-1-aminopyrene located in the (CG)3 sequence: effects of SOS, proofreading, and mismatch repair. Malia, S.A., Vyas, R.R., Basu, A.K. Biochemistry (1996) [Pubmed]
  19. Cloning of enterohemorrhagic Escherichia coli phage VT-2 dam methyltransferase. Radlinska, M., Bujnicki, J.M. Acta Microbiol. Pol. (2001) [Pubmed]
  20. Bidirectional excision in methyl-directed mismatch repair. Grilley, M., Griffith, J., Modrich, P. J. Biol. Chem. (1993) [Pubmed]
 
WikiGenes - Universities