The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum.

Sulfatases undergo an unusual protein modification leading to conversion of a specific cysteine residue into alpha-formylglycine. This conversion is essential for catalytic activity. In arylsulfatase A the alpha-formylglycine is generated inside the endoplasmic reticulum at a late stage of protein translocation. Using in vitro translation in the presence of transport-competent microsomes we found that arylsulfatase B is also modified in a similar way by the formylglycine-generating machinery. Modification depended on protein transport and on the correct position of the relevant cysteine. Arylsulfatase A and B did not compete for modification, as became apparent in co-expression experiments. This could argue for an association of the modification machinery with the protein translocation apparatus.[1]


WikiGenes - Universities