The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase.

The release and transfer of zinc from metallothionein (MT) to zinc-depleted sorbitol dehydrogenase (EC 1.1.1.14) in vitro has been used to explore the role of MT in cellular zinc distribution. A 1:1 molar ratio of MT to sorbitol dehydrogenase is required for full reactivation, indicating that only one of the seven zinc atoms of MT is transferred in this process. Reduced glutathione (GSH) and glutathione disulfide (GSSG) are critical modulators of both the rate of zinc transfer and the ultimate number of zinc atoms transferred. GSSG increases the rate of zinc transfer 3-fold, and its concentration is the major determinant for efficient zinc transfer. GSH has a dual function. In the absence of GSSG, it inhibits zinc transfer from MT, indicating that MT is in a latent state under the relatively high cellular concentrations of GSH. In addition, it primes MT for the reaction with GSSG by enhancing the rate of zinc transfer 10-fold and by increasing the number of zinc atoms transferred to four. 65Zn-labeling experiments confirm the release of one zinc from MT in the absence of glutathione and the more effective release of zinc in the presence of GSH and GSSG. In vivo, MT may keep the cellular concentrations of free zinc very low and, acting as a temporary cellular reservoir, release zinc in a process that is dynamically controlled by its interactions with both GSH and GSSG. These results suggest that a change of the redox state of the cell could serve as a driving force and signal for zinc distribution from MT.[1]

References

  1. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Jiang, L.J., Maret, W., Vallee, B.L. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
 
WikiGenes - Universities