The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SORD  -  sorbitol dehydrogenase

Homo sapiens

Synonyms: HEL-S-95n, L-iditol 2-dehydrogenase, SORD1, Sorbitol dehydrogenase
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SORD

 

High impact information on SORD

 

Chemical compound and disease context of SORD

 

Biological context of SORD

  • The deduced amino acid sequence of the SORD structure differs at a few positions from the directly determined protein sequence, suggesting allelic forms of the enzyme [12].
  • The SORD gene was mapped by fluorescence in situ hybridization and found to occupy a single site on chromosome 15q15, indicating that it is a single-copy gene [1].
  • The gene structure of SORD spans approximately 30 kb divided into 9 exons and 8 introns [12].
  • Marmoset SORD, which appears to be a single gene in this species, shows significantly less homology with either SORD1 or SORD2 than they do with each other, suggesting that the human homologs represent a recent gene duplication event [13].
  • However, knowledge of the presence of this highly similar sequence in the human genome is essential to ensure that sequence variations identified during genetic analysis of SORD are not attributed to polymorphisms within that gene itself [14].
 

Anatomical context of SORD

  • Membrane-bound and soluble forms of erythrocyte sorbitol dehydrogenase (SORD) activity are compared in normal individuals [2].
  • These findings can be explained either by the presence of two alleles at a different SORD locus determining the enzyme in seminal plasma or by the formation of secondary isozymes [15].
  • Sorbitol dehydrogenase was below the detectable limit in pericytes and endothelial cells [16].
  • We report here a novel sorbitol dehydrogenase inhibitor, 16, that shows very high oral potency (50 microg/kg) in normalizing elevated fructose levels in the sciatic nerve of chronically diabetic rats and sustained duration of action (>24 h) [17].
  • In isolated hepatocytes in suspension, the effect of sorbitol but not that of fructose to increase the concentration of fructose 1-phosphate and to stimulate glucokinase was abolished by 2-hydroxymethyl-4-(4-N,N-dimethylamino-1-piperazino)-pyrimidine (SDI 158), an inhibitor of sorbitol dehydrogenase [18].
 

Associations of SORD with chemical compounds

 

Physical interactions of SORD

  • This study reports a molecular modelling investigation of human sorbitol dehydrogenase complexed with the substrate sorbitol and the inhibitor WAY135 706 based on the structures of human beta3 alcohol dehydrogenase, human sigma alcohol dehydrogenase and horse liver alcohol dehydrogenase [20].
 

Other interactions of SORD

 

Analytical, diagnostic and therapeutic context of SORD

References

  1. The human sorbitol dehydrogenase gene: cDNA cloning, sequence determination, and mapping by fluorescence in situ hybridization. Lee, F.K., Cheung, M.C., Chung, S. Genomics (1994) [Pubmed]
  2. Membrane-bound sorbitol dehydrogenase in human red blood cells. Studies in normal subjects and in enzyme-deficient subjects with congenital cataracts. Alvarez, A., Martínez, A., Ibarra, B., Medina, C., Bracamontes, M., Perea, J., Vaca, G. J. Inherit. Metab. Dis. (1993) [Pubmed]
  3. Expression, purification and preliminary crystallographic analysis of human sorbitol dehydrogenase. Darmanin, C., Iwata, T., Carper, D.A., Sparrow, L.G., Chung, R.P., El-Kabbani, O. Acta Crystallogr. D Biol. Crystallogr. (2003) [Pubmed]
  4. Sorbitol dehydrogenase from Bacillus subtilis. Purification, characterization, and gene cloning. Ng, K., Ye, R., Wu, X.C., Wong, S.L. J. Biol. Chem. (1992) [Pubmed]
  5. Initial catabolism of sorbitol in Actinomyces naeslundii and Actinomyces viscosus. Kalfas, S., Takahashi, N., Yamada, T. Oral Microbiol. Immunol. (1994) [Pubmed]
  6. Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Teo, G., Suzuki, Y., Uratsu, S.L., Lampinen, B., Ormonde, N., Hu, W.K., Dejong, T.M., Dandekar, A.M. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  7. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Jiang, L.J., Maret, W., Vallee, B.L. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  8. Enzyme relationships in a sorbitol pathway that bypasses glycolysis and pentose phosphates in glucose metabolism. Jeffery, J., Jörnvall, H. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  9. Hepatotoxicity due to allyl alcohol in deermice depends on alcohol dehydrogenase. Belinsky, S.A., Bradford, B.U., Forman, D.T., Glassman, E.B., Felder, M.R., Thurman, R.G. Hepatology (1985) [Pubmed]
  10. Elevated activity of transcription factor nuclear factor of activated T-cells 5 (NFAT5) and diabetic nephropathy. Yang, B., Hodgkinson, A.D., Oates, P.J., Kwon, H.M., Millward, B.A., Demaine, A.G. Diabetes (2006) [Pubmed]
  11. Lens sorbitol dehydrogenase deficiency in a patient with congenital cataract. Vetter, V., Shin, Y.S. Eur. J. Pediatr. (1995) [Pubmed]
  12. Structural organization of the human sorbitol dehydrogenase gene (SORD). Iwata, T., Popescu, N.C., Zimonjic, D.B., Karlsson, C., Höög, J.O., Vaca, G., Rodriguez, I.R., Carper, D. Genomics (1995) [Pubmed]
  13. Structural and evolutionary characterization of the human sorbitol dehydrogenase gene duplication. Carr, I.M., Whitehouse, A., Coletta, P.L., Markham, A.F. Mamm. Genome (1998) [Pubmed]
  14. Identification and characterisation of a sequence related to human sorbitol dehydrogenase. Carr, I.M., Markham, A.F., Coletta, P.L. Eur. J. Biochem. (1997) [Pubmed]
  15. Sorbitol dehydrogenase (EC.1.1.1.14) polymorphism in human seminal plasma. Ibarra, B., Gonzalez-Quiroga, G., Vaca, G., Diaz, M., Rivas, F., Cantu, J.M. Ann. Genet. (1982) [Pubmed]
  16. Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells. Sato, S., Secchi, E.F., Lizak, M.J., Fukase, S., Ohta, N., Murata, M., Tsai, J.Y., Kador, P.F. Invest. Ophthalmol. Vis. Sci. (1999) [Pubmed]
  17. A sorbitol dehydrogenase inhibitor of exceptional in vivo potency with a long duration of action: 1-(R)-[4-[4-(4,6-dimethyl[1,3,5]triazin-2-yl)- 2R,6S-dimethylpiperazin-1-yl]pyrimidin-2- yl]ethanol. Mylari, B.L., Oates, P.J., Zembrowski, W.J., Beebe, D.A., Conn, E.L., Coutcher, J.B., O'Gorman, M.T., Linhares, M.C., Withbroe, G.J. J. Med. Chem. (2002) [Pubmed]
  18. Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes. Niculescu, L., Veiga-da-Cunha, M., Van Schaftingen, E. Biochem. J. (1997) [Pubmed]
  19. Genetic mapping in Xenopus laevis: eight linkage groups established. Graf, J.D. Genetics (1989) [Pubmed]
  20. Modelling studies on the binding of substrate and inhibitor to the active site of human sorbitol dehydrogenase. Darmanin, C., El-Kabbani, O. Bioorg. Med. Chem. Lett. (2000) [Pubmed]
  21. Aldose metabolism in developing human fetal brain and liver. Samanta, B.K., Chandra, N.C., Ghosh, S., Mukherjee, K.L. Experientia (1984) [Pubmed]
  22. Harmonization of animal clinical pathology testing in toxicity and safety studies. The Joint Scientific Committee for International Harmonization of Clinical Pathology Testing. Weingand, K., Brown, G., Hall, R., Davies, D., Gossett, K., Neptun, D., Waner, T., Matsuzawa, T., Salemink, P., Froelke, W., Provost, J.P., Dal Negro, G., Batchelor, J., Nomura, M., Groetsch, H., Boink, A., Kimball, J., Woodman, D., York, M., Fabianson-Johnson, E., Lupart, M., Melloni, E. Fundamental and applied toxicology : official journal of the Society of Toxicology. (1996) [Pubmed]
  23. Frontal affinity chromatography-mass spectrometry assay technology for multiple stages of drug discovery: applications of a chromatographic biosensor. Chan, N.W., Lewis, D.F., Rosner, P.J., Kelly, M.A., Schriemer, D.C. Anal. Biochem. (2003) [Pubmed]
 
WikiGenes - Universities