The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Mass spectrometric and capillary electrophoretic investigation of the enzymatic degradation of heparin-like glycosaminoglycans.

Difficulties in determining composition and sequence of glycosaminoglycans, such as those related to heparin, have limited the investigation of these biologically important molecules. Here, we report methodology, based on matrix-assisted laser desorption ionization MS and capillary electrophoresis, to follow the time course of the enzymatic degradation of heparin-like glycosaminoglycans through the intermediate stages to the end products. MS allows the determination of the molecular weights of the sulfated carbohydrate intermediates and their approximate relative abundances at different time points of the experiment. Capillary electrophoresis subsequently is used to follow more accurately the abundance of the components and also to measure sulfated disaccharides for which MS is not well applicable. For those substrates that produce identical or isomeric intermediates, the reducing end of the carbohydrate chain was converted to the semicarbazone. This conversion increases the molecular weight of all products retaining the reducing terminus by the "mass tag" (in this case 56 Da) and thus distinguishes them from other products. A few picomoles of heparin-derived, sulfated hexa- to decasaccharides of known structure were subjected to heparinase I digestion and analyzed. The results indicate that the enzyme acts primarily exolytically and in a processive mode. The methodology described should be equally useful for other enzymes, including those modified by site-directed mutagenesis, and may lead to the development of an approach to the sequencing of complex glycosaminoglycans.[1]

References

  1. Mass spectrometric and capillary electrophoretic investigation of the enzymatic degradation of heparin-like glycosaminoglycans. Rhomberg, A.J., Ernst, S., Sasisekharan, R., Biemann, K. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
 
WikiGenes - Universities