The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A nucleotide-binding domain of porcine liver annexin VI. Proteolysis of annexin VI labelled with 8-azido-ATP, purification by affinity chromatography on ATP-agarose, and fluorescence studies.

Porcine liver annexin VI (AnxVI) of Mr 68.000 is an ATP-binding protein as evidenced by specific and saturable UV-dependent labelling with 8-azido-[gamma-32P]ATP or the fluorescent analog of ATP, 2'-(or 3')-O-(2,4,6-trinitrophenyl)adenosine triphosphate and by binding of AnxVI to ATP-agarose. These characteristics of purified AnxVI were used to identify and characterize preliminary nucleotide-binding domain of the protein. AnxVI labelled with 8-azido-ATP was subjected to limited proteolysis and the proteolytic fragments of AnxVI that retained the covalently-bound nucleotide were separated by means of gel electrophoresis and visualized by exposure of the gel to a phosphor storage screen. It was found that the AnxVI proteolytic fragments of Mr 34-36.000 and smaller retained the nucleotide. In a reciprocal experiment, AnxVI was digested with proteolytic enzymes and in an ATP eluate from an ATP-agarose column protein fragments of similar Mr to these labelled with 8-azido-ATP were identified. The extent of AnxVI labelling with 8-azido-ATP and the distribution of proteolytic fragments varied upon calcium concentration. These results lead to the conclusion that there is a nucleotide-binding domain within the AnxVI molecule that is functionally similar to the nucleotide-binding domains of other nucleotide-binding proteins. The nucleotide-binding domain is located close to the tryptophan residue 343 of AnxVI and in close vicinity to the Ca2+- and phospholipid-binding sites of the protein. This is confirmed by the observation that the tryptophan fluorescence intensity of AnxVI decreases in the presence of a fluorescence analog of ATP in a calcium-dependent manner, due to the quenching properties of the nucleotide and/or fluorescence energy transfer from AnxVI tryptophan to fluorophore. Both processes were modulated by the presence of phospholipid molecules.[1]

References

 
WikiGenes - Universities