The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AC1MC3AP     [[[(2R,3S,4R,5R)-5-(6-amino- 8-azido-purin...

Synonyms: 8-Azido-ATP, 53696-59-6, 8-Azidoadenosine 5'-triphosphate
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of 8-Azidoadenosine 5'-triphosphate


High impact information on 8-Azidoadenosine 5'-triphosphate

  • Since neither purified nor induced ICP47 inhibited photocrosslinking of 8-azido-ATP to TAP1 and TAP2 it seems that ICP47 does not prevent ATP from binding to TAP [6].
  • 8-azido-ATP inactivates SecA for proOmpA translocation and for translocation ATPase, yet does not inhibit a low level of ATP hydrolysis inherent in the isolated SecA protein [7].
  • These results suggest that SUR1 binds 8-azido-ATP strongly at NBF1 and that MgADP, either by direct binding to NBF2 or by hydrolysis of bound MgATP at NBF2, stabilizes prebound 8-azido-ATP binding at NBF1 [8].
  • Experiments with ATP affinity reagents 8-azido-ATP and 2,3-dialdehyde ATP have failed to label the middle T antigen [9].
  • 8-Amino-ATP, 8-azido-ATP, and 8-aza-ATP all produced chain termination of polyadenylation, and no primer extension was observed with the C-8-halogenated derivatives 8-Br-ATP and 8-Cl-ATP [10].

Chemical compound and disease context of 8-Azidoadenosine 5'-triphosphate


Biological context of 8-Azidoadenosine 5'-triphosphate


Anatomical context of 8-Azidoadenosine 5'-triphosphate


Associations of 8-Azidoadenosine 5'-triphosphate with other chemical compounds


Gene context of 8-Azidoadenosine 5'-triphosphate

  • Studies with purified proteins showed that mutants D558N and D1203N retained 14 and 30% of the drug-stimulated ATPase activity of wild-type (WT) Mdr3, respectively, and vanadate trapping of 8-azido[alpha-(32)P]nucleotide confirmed slower basal and drug-stimulated 8-azido-ATP hydrolysis compared to that for WT Mdr3 [25].
  • 8-azido ATP has now been shown to have similar binding parameters (Kd 8 nM, 20,000 sites/platelet) but, in this case, photoincorporation occurred equally in GPIIb and GPIIIa [26].
  • Although trapping at NBD2 was dependent on co-expression of both halves of MRP1, binding of 8-azido-ATP by NBD1 remained detectable when the NH(2)-proximal half of MRP1 was expressed alone and when NBD1 was expressed as a soluble polypeptide [27].
  • We have employed photoaffinity labeling with 8-azido-ATP, which supports channel gating as effectively as ATP to evaluate interactions with each NBD in intact membrane-bound CFTR [28].
  • The individually expressed N-half displayed weak 8-azido-ATP labeling and low basal ATPase activity that was not stimulated by retinal, whereas the C-half did not bind ATP and exhibited little if any ATPase activity [29].

Analytical, diagnostic and therapeutic context of 8-Azidoadenosine 5'-triphosphate


  1. ATP-binding sites in the membrane components of histidine permease, a periplasmic transport system. Hobson, A.C., Weatherwax, R., Ames, G.F. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  2. 8-Azido-ATP inactivation of Escherichia coli transcription termination factor Rho. Modification of one subunit inactivates the hexamer. O, I., Stitt, B.L. J. Biol. Chem. (1994) [Pubmed]
  3. Photoaffinity labeling of rotavirus VP1 with 8-azido-ATP: identification of the viral RNA polymerase. Valenzuela, S., Pizarro, J., Sandino, A.M., Vásquez, M., Fernández, J., Hernández, O., Patton, J., Spencer, E. J. Virol. (1991) [Pubmed]
  4. An atypical KdpD homologue from the cyanobacterium Anabaena sp. strain L-31: cloning, in vivo expression, and interaction with Escherichia coli KdpD-CTD. Ballal, A., Bramkamp, M., Rajaram, H., Zimmann, P., Apte, S.K., Altendorf, K. J. Bacteriol. (2005) [Pubmed]
  5. Intraliposomal nucleotides change the kinetics of reconstituted cytochrome c oxidase from bovine heart but not from Paracoccus denitrificans. Hüther, F.J., Kadenbach, B. Biochem. Biophys. Res. Commun. (1988) [Pubmed]
  6. Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. Ahn, K., Meyer, T.H., Uebel, S., Sempé, P., Djaballah, H., Yang, Y., Peterson, P.A., Früh, K., Tampé, R. EMBO J. (1996) [Pubmed]
  7. SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. Lill, R., Cunningham, K., Brundage, L.A., Ito, K., Oliver, D., Wickner, W. EMBO J. (1989) [Pubmed]
  8. Cooperative binding of ATP and MgADP in the sulfonylurea receptor is modulated by glibenclamide. Ueda, K., Komine, J., Matsuo, M., Seino, S., Amachi, T. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  9. Polyoma virus middle T antigen: relationship to cell membranes and apparent lack of ATP-binding activity. Schaffhausen, B.S., Dorai, H., Arakere, G., Benjamin, T.L. Mol. Cell. Biol. (1982) [Pubmed]
  10. Chain termination and inhibition of Saccharomyces cerevisiae poly(A) polymerase by C-8-modified ATP analogs. Chen, L.S., Sheppard, T.L. J. Biol. Chem. (2004) [Pubmed]
  11. Biochemical analysis of Escherichia coli selenophosphate synthetase mutants. Lysine 20 is essential for catalytic activity and cysteine 17/19 for 8-azido-ATP derivatization. Kim, I.Y., Veres, Z., Stadtman, T.C. J. Biol. Chem. (1993) [Pubmed]
  12. Specific labelling of the (Ca2+ + Mg2+)-ATPase of Escherichia coli with 8-azido-ATP and 4-chloro-7-nitrobenzofurazan. Verheijen, J.H., Postma, P.W., van Dam, K. Biochim. Biophys. Acta (1978) [Pubmed]
  13. Asp537, Asp812 are essential and Lys631, His811 are catalytically significant in bacteriophage T7 RNA polymerase activity. Osumi-Davis, P.A., de Aguilera, M.C., Woody, R.W., Woody, A.Y. J. Mol. Biol. (1992) [Pubmed]
  14. DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) inhibits an early step of protein translocation across the mammalian ER membrane. Jungnickel, B., Rapoport, T.A. FEBS Lett. (1993) [Pubmed]
  15. 1H-NMR studies on nucleotide binding to the catalytic sites of bovine mitochondrial F1-ATPase. Garin, J., Vignais, P.V., Gronenborn, A.M., Clore, G.M., Gao, Z., Baeuerlein, E. FEBS Lett. (1988) [Pubmed]
  16. In vitro phosphorylation of NS protein by the L protein of vesicular stomatitis virus. Sánchez, A., De, B.P., Banerjee, A.K. J. Gen. Virol. (1985) [Pubmed]
  17. Altered drug-stimulated ATPase activity in mutants of the human multidrug resistance protein. Müller, M., Bakos, E., Welker, E., Váradi, A., Germann, U.A., Gottesman, M.M., Morse, B.S., Roninson, I.B., Sarkadi, B. J. Biol. Chem. (1996) [Pubmed]
  18. Photoaffinity labeling of dog pancreas microsomes with 8-azido-ATP inhibits association of nascent preprolactin with the signal sequence receptor complex. Zimmermann, R., Zimmermann, M., Mayinger, P., Klappa, P. FEBS Lett. (1991) [Pubmed]
  19. 8-Azido-ATP (alpha 32P) binding to rod outer segment proteins. Shuster, T.A., Nagy, A.K., Farber, D.B. Exp. Eye Res. (1988) [Pubmed]
  20. Protein folding within and protein transport into mammalian microsomes are differentially affected by photoaffinity labeling of microsomes with 8-azido-ATP. Brunke, M., Tyedmers, J., Zimmermann, R. Biochem. Biophys. Res. Commun. (1996) [Pubmed]
  21. An immunoreactive 8-azido ATP-labeled protein common to the lysosomal and chromaffin granule membrane. Cuppoletti, J., Strasser, J.E., Dean, G.E. Biochim. Biophys. Acta (1988) [Pubmed]
  22. P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. Urbatsch, I.L., Sankaran, B., Weber, J., Senior, A.E. J. Biol. Chem. (1995) [Pubmed]
  23. Structure-function relationships in the Saccharomyces cerevisiae poly(A) polymerase. Identification of a novel RNA binding site and a domain that interacts with specificity factor(s). Zhelkovsky, A.M., Kessler, M.M., Moore, C.L. J. Biol. Chem. (1995) [Pubmed]
  24. Study of the rat liver S-adenosylmethionine synthetase active site with 8-azido ATP. Deigner, H.P., Mato, J.M., Pajares, M.A. Biochem. J. (1995) [Pubmed]
  25. Mutational analysis of conserved carboxylate residues in the nucleotide binding sites of P-glycoprotein. Urbatsch, I.L., Julien, M., Carrier, I., Rousseau, M.E., Cayrol, R., Gros, P. Biochemistry (2000) [Pubmed]
  26. Adenine nucleotide binding and photoincorporation in Glanzmann's thrombasthenia platelets. Greco, N.J., Tandon, N.N., Jackson, B., Jamieson, G.A. Biochim. Biophys. Acta (1995) [Pubmed]
  27. Comparison of the functional characteristics of the nucleotide binding domains of multidrug resistance protein 1. Gao, M., Cui, H.R., Loe, D.W., Grant, C.E., Almquist, K.C., Cole, S.P., Deeley, R.G. J. Biol. Chem. (2000) [Pubmed]
  28. Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. Aleksandrov, L., Mengos, A., Chang , X., Aleksandrov, A., Riordan, J.R. J. Biol. Chem. (2001) [Pubmed]
  29. Functional interaction between the two halves of the photoreceptor-specific ATP binding cassette protein ABCR (ABCA4). Evidence for a non-exchangeable ADP in the first nucleotide binding domain. Ahn, J., Beharry, S., Molday, L.L., Molday, R.S. J. Biol. Chem. (2003) [Pubmed]
  30. Homology of egg and flagellar dynein. Comparison of ATP-binding sites and primary structure. Pratt, M.M. J. Biol. Chem. (1986) [Pubmed]
  31. Kinetic and mutational dissection of the two ATPase activities of terminase, the DNA packaging enzyme of bacteriophage Chi. Hwang, Y., Catalano, C.E., Feiss, M. Biochemistry (1996) [Pubmed]
  32. Photoaffinity labeling of the nucleotide-binding site of the uncoupling protein from hamster brown adipose tissue. Winkler, E., Klingenberg, M. Eur. J. Biochem. (1992) [Pubmed]
  33. A nucleotide-binding domain of porcine liver annexin VI. Proteolysis of annexin VI labelled with 8-azido-ATP, purification by affinity chromatography on ATP-agarose, and fluorescence studies. Bandorowicz-Pikuła, J. Mol. Cell. Biochem. (1998) [Pubmed]
  34. Positive co-operative activity and dimerization of the isolated ABC ATPase domain of HlyB from Escherichia coli. Benabdelhak, H., Schmitt, L., Horn, C., Jumel, K., Blight, M.A., Holland, I.B. Biochem. J. (2005) [Pubmed]
WikiGenes - Universities