Regulation of mRNA localization by transmembrane signalling: local interaction of HB-GAM ( heparin-binding growth-associated molecule) with the cell surface localizes beta-actin mRNA.
Localization of mRNAs is currently thought to be partially responsible for molecular sorting to specific compartments within the cell. In mammalian cells the best-studied example is the beta-actin mRNA that is localized to the cell processes, and its localization is necessary in migratory responses of cells. It is reasonable to assume that mRNA localization within cells is coupled to transmembrane signalling due to extracellular factors, but little is known about such putative mechanisms. We show here that HB-GAM, an extracellular matrix-associated factor that enhances migratory responses in cells, is able to localize beta-actin mRNA when locally applied to cells via microbeads. The HB-GAM-induced mRNA localization is specifically inhibited by low concentrations of heparin and by heparitinase treatment of cells, showing that cell-surface heparin-type glycans are required for the effect. The finding that soluble N-syndecan is also inhibitory suggests that the transmembrane proteoglycan N-syndecan, previously identified as an HB-GAM receptor, is involved in the mRNA-localizing effect of HB-GAM. Inhibition of the mRNA localization by the src-kinase inhibitor PP1 is compatible with an N-syndecan-mediated effect since the receptor function of N-syndecan has been recently found to depend on the src-kinase signalling pathway. The mRNA-localizing activity of N-syndecan is also suggested by the finding that affinity-purified anti-N-syndecan antibodies coated on microbeads are able to localize beta-actin mRNA.[1]References
- Regulation of mRNA localization by transmembrane signalling: local interaction of HB-GAM (heparin-binding growth-associated molecule) with the cell surface localizes beta-actin mRNA. Fages, C., Kaksonen, M., Kinnunen, T., Punnonen, E.L., Rauvala, H. J. Cell. Sci. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg