The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Analysis of peptides, proteins, protein digests, and whole human blood by capillary electrophoresis/electrospray ionization-mass spectrometry using an in-capillary electrode sheathless interface.

An in-capillary electrode sheathless interface was applied to the capillary electrophoresis/electrospray ionization-mass spectrometry (CE/ESI-MS) analysis of mixtures of small peptides, proteins, and tryptic digests of proteins. The effects of different experimental parameters on the performance of this CE/ESI-MS interface were studied. The distance of the in-capillary electrode from the CE outlet and the length of the electrode inside the capillary had no significant effects on the CE separation and ESI behavior under the experimental conditions used. However, significant enhancement of the sensitivity resulted from the use of narrower CE capillaries. Using a quadrupole mass spectrometer, an aminopropylsilane-coated capillary, and a wide scan mass-to-charge ratio range of 500-1400, detection limits of approximately 4, 1, and 0.6 fmol for cytochrome c and myoglobin were achieved for 75-, 50-, and 30-micron inner diameter capillaries, respectively. Approximately one order of magnitude lower detection limits were achieved under the multiple-ion monitoring mode. The application of the in-capillary electrode sheathless interface to real-world samples was demonstrated by CE/ESI-MS analysis of a human blood sample.[1]


WikiGenes - Universities