The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Alterations in GABAA receptor alpha 1 and alpha 4 subunit mRNA levels in thalamic relay nuclei following absence-like seizures in rats.

Modification of GABAA receptor mRNA levels by seizure activity can regulate general neuronal excitability. The possibility of absence seizure-induced alteration in GABAA receptor alpha 1, alpha 4, beta 2, and gamma 2 subunit gene expression in thalamic relay nuclei was studied in a rat model of absence seizures induced by gamma-hydroxybutyric acid (GHB). We observed a marked increase in alpha 1 mRNA and a corresponding decrease in alpha 4 mRNA in thalamic relay nuclei 2-4 h after the onset of GHB-induced absence seizures (when the seizures were terminating). These changes were selective to these alpha isoforms as neither beta 2 nor gamma 2 mRNA changed following seizures and occurred only in thalamic relay nuclei but not in hippocampus, a structure from which absence seizures do not evolve. The alterations in alpha 1 and alpha 4 mRNA persisted until about 12 h, and by 24 h after the seizure-onset the mRNA levels normalized. Blocking GHB-seizures produced no change in the levels of alpha 1 and alpha 4 mRNA in thalamic relay nuclei, suggesting that seizures themselves were responsible for mRNA alterations. In order to determine if absence seizure-induced changes in alpha 1 and alpha 4 mRNA had any physiological significance, GHB was readministered in rats 6 and 24 h after the onset of seizures. The total duration of GHB-seizures was found to be significantly decreased when GHB was readministered at 6 h but not 24 h after the seizure-onset. These results suggest that absence seizures regulate GABAA receptor alpha 1 and alpha 4 gene expression in thalamic relay nuclei as a compensatory mechanism by which absence seizures are terminated.[1]

References

  1. Alterations in GABAA receptor alpha 1 and alpha 4 subunit mRNA levels in thalamic relay nuclei following absence-like seizures in rats. Banerjee, P.K., Tillakaratne, N.J., Brailowsky, S., Olsen, R.W., Tobin, A.J., Snead, O.C. Exp. Neurol. (1998) [Pubmed]
 
WikiGenes - Universities