The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Enhanced rotational dynamics of the phosphorylation domain of the Ca-ATPase upon calcium activation.

We have used labeling conditions that permit the specific and covalent attachment of erythrosin isothiocyanate (Er-ITC) to Lys464 within the phosphorylation domain of the Ca-ATPase in skeletal sarcoplasmic reticulum membranes. These labeling conditions do not interfere with high-affinity ATP binding, phosphoenzyme formation, or phosphoenzyme hydrolysis [Huang, S., Negash, S., and Squier, T. C. (1998) Biochemistry 37, 6949-6957]. Thus, we can use frequency-domain phosphorescence spectroscopy to measure the rotational dynamics of the Ca-ATPase stabilized in different enzymatic states corresponding to the absence of bound ligands (E), calcium activation (E x Ca2), the presence of bound nucleotide (E x ATP), and formation of phosphoenzyme (E-P). We resolve three rotational correlation times corresponding to (i) a large-amplitude domain motion of the phosphorylation domain (phi1 approximately 5 +/- 1 micros), (ii) overall protein rotational motion with respect to the membrane normal (phi2 approximately 50 +/- 10 micros), and (iii) the rotational motion of the SR vesicles (phi3 approximately 1.1 +/- 0.4 ms). No differences are observed in the rotational dynamics of E, E x ATP, or E-P, indicating that phosphoenzyme formation or nucleotide binding result in no global structural changes involving the phosphorylation domain. In contrast, calcium activation enhances the amplitude of motion of the phosphorylation domain. These observed calcium-dependent changes in rotational dynamics result from structural changes within a single Ca-ATPase polypeptide chain, since protein-protein interactions do not change upon calcium binding. Thus, calcium binding induces concerted domain motions within a single Ca-ATPase polypeptide chain that may play a critical role in facilitating substrate binding and utilization.[1]

References

 
WikiGenes - Universities