The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Sarcoplasmic Reticulum

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Sarcoplasmic Reticulum

 

High impact information on Sarcoplasmic Reticulum

 

Chemical compound and disease context of Sarcoplasmic Reticulum

 

Biological context of Sarcoplasmic Reticulum

 

Anatomical context of Sarcoplasmic Reticulum

 

Associations of Sarcoplasmic Reticulum with chemical compounds

 

Gene context of Sarcoplasmic Reticulum

 

Analytical, diagnostic and therapeutic context of Sarcoplasmic Reticulum

References

  1. Doxorubicin cardiomyopathy is associated with a decrease in calcium release channel of the sarcoplasmic reticulum in a chronic rabbit model. Dodd, D.A., Atkinson, J.B., Olson, R.D., Buck, S., Cusack, B.J., Fleischer, S., Boucek, R.J. J. Clin. Invest. (1993) [Pubmed]
  2. The G1021A substitution in the RYR1 gene does not cosegregate with malignant hyperthermia susceptibility in a British pedigree. Adeokun, A.M., West, S.P., Ellis, F.R., Halsall, P.J., Hopkins, P.M., Foroughmand, A.M., Iles, D.E., Robinson, R.L., Stewart, A.D., Curran, J.L. Am. J. Hum. Genet. (1997) [Pubmed]
  3. Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. del Monte, F., Lebeche, D., Guerrero, J.L., Tsuji, T., Doye, A.A., Gwathmey, J.K., Hajjar, R.J. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  4. Differential effect of global ischemia on the ryanodine-sensitive and ryanodine-insensitive calcium uptake of cardiac sarcoplasmic reticulum. Feher, J.J., LeBolt, W.R., Manson, N.H. Circ. Res. (1989) [Pubmed]
  5. Function of the sarcoplasmic reticulum and expression of its Ca2(+)-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. de la Bastie, D., Levitsky, D., Rappaport, L., Mercadier, J.J., Marotte, F., Wisnewsky, C., Brovkovich, V., Schwartz, K., Lompré, A.M. Circ. Res. (1990) [Pubmed]
  6. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. de Meis, L., Vianna, A.L. Annu. Rev. Biochem. (1979) [Pubmed]
  7. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Simmerman, H.K., Jones, L.R. Physiol. Rev. (1998) [Pubmed]
  8. Malignant hyperthermia: excitation-contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects. Mickelson, J.R., Louis, C.F. Physiol. Rev. (1996) [Pubmed]
  9. Aspects of smooth muscle function in molluscan catch muscle. Twarog, B.M. Physiol. Rev. (1976) [Pubmed]
  10. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Minamisawa, S., Hoshijima, M., Chu, G., Ward, C.A., Frank, K., Gu, Y., Martone, M.E., Wang, Y., Ross, J., Kranias, E.G., Giles, W.R., Chien, K.R. Cell (1999) [Pubmed]
  11. Effects of intracellular acidosis on [Ca2+]i transients, transsarcolemmal Ca2+ fluxes, and contraction in ventricular myocytes. Kohmoto, O., Spitzer, K.W., Movsesian, M.A., Barry, W.H. Circ. Res. (1990) [Pubmed]
  12. Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake. Kaplan, P., Hendrikx, M., Mattheussen, M., Mubagwa, K., Flameng, W. Circ. Res. (1992) [Pubmed]
  13. Sulfhydryl redox state affects susceptibility to ischemia and sarcoplasmic reticulum Ca2+ release in rat heart. Implications for ischemic preconditioning. Zucchi, R., Yu, G., Galbani, P., Mariani, M., Ronca, G., Ronca-Testoni, S. Circ. Res. (1998) [Pubmed]
  14. The molecular biology of heart failure. Schwartz, K., Chassagne, C., Boheler, K.R. J. Am. Coll. Cardiol. (1993) [Pubmed]
  15. Contractile properties of cardiac papillary muscle in streptozotocin-diabetic rats and the effects of aldose reductase inhibition. Cameron, N.E., Cotter, M.A., Robertson, S. Diabetologia (1989) [Pubmed]
  16. Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban. Fujii, J., Ueno, A., Kitano, K., Tanaka, S., Kadoma, M., Tada, M. J. Clin. Invest. (1987) [Pubmed]
  17. Altered cellular calcium regulatory systems in a rat model of cirrhotic cardiomyopathy. Ward, C.A., Liu, H., Lee, S.S. Gastroenterology (2001) [Pubmed]
  18. Inositol 1,4,5-trisphosphate receptor in heart: evidence for its concentration in Purkinje myocytes of the conduction system. Gorza, L., Schiaffino, S., Volpe, P. J. Cell Biol. (1993) [Pubmed]
  19. Cortical localization of a calcium release channel in sea urchin eggs. McPherson, S.M., McPherson, P.S., Mathews, L., Campbell, K.P., Longo, F.J. J. Cell Biol. (1992) [Pubmed]
  20. Muscarinic acetylcholine receptor subtypes in smooth muscle. Eglen, R.M., Reddy, H., Watson, N., Challiss, R.A. Trends Pharmacol. Sci. (1994) [Pubmed]
  21. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Ehrlich, B.E., Watras, J. Nature (1988) [Pubmed]
  22. Role of intracellular Ca2+ sequestration in beta-adrenergic relaxation of a smooth muscle. Mueller, E., van Breemen, C. Nature (1979) [Pubmed]
  23. Structural perspectives of phospholamban, a helical transmembrane pentamer. Arkin, I.T., Adams, P.D., Brünger, A.T., Smith, S.O., Engelman, D.M. Annual review of biophysics and biomolecular structure. (1997) [Pubmed]
  24. Role of intracellular sodium in the regulation of intracellular calcium and contractility. Effects of DPI 201-106 on excitation-contraction coupling in human ventricular myocardium. Gwathmey, J.K., Slawsky, M.T., Briggs, G.M., Morgan, J.P. J. Clin. Invest. (1988) [Pubmed]
  25. Evidence for the presence of calsequestrin in two structurally different regions of myocardial sarcoplasmic reticulum. Jorgensen, A.O., Campbell, K.P. J. Cell Biol. (1984) [Pubmed]
  26. Caffeine induces a transient inward current in cultured cardiac cells. Clusin, W.T. Nature (1983) [Pubmed]
  27. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Hoshijima, M., Ikeda, Y., Iwanaga, Y., Minamisawa, S., Date, M.O., Gu, Y., Iwatate, M., Li, M., Wang, L., Wilson, J.M., Wang, Y., Ross, J., Chien, K.R. Nat. Med. (2002) [Pubmed]
  28. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Tanabe, T., Beam, K.G., Adams, B.A., Niidome, T., Numa, S. Nature (1990) [Pubmed]
  29. Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Volpe, P., Salviati, G., Di Virgilio, F., Pozzan, T. Nature (1985) [Pubmed]
  30. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Smith, J.S., Coronado, R., Meissner, G. Nature (1985) [Pubmed]
  31. Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. Most, P., Pleger, S.T., Völkers, M., Heidt, B., Boerries, M., Weichenhan, D., Löffler, E., Janssen, P.M., Eckhart, A.D., Martini, J., Williams, M.L., Katus, H.A., Remppis, A., Koch, W.J. J. Clin. Invest. (2004) [Pubmed]
  32. Small, membrane-bound, alternatively spliced forms of ankyrin 1 associated with the sarcoplasmic reticulum of mammalian skeletal muscle. Zhou, D., Birkenmeier, C.S., Williams, M.W., Sharp, J.J., Barker, J.E., Bloch, R.J. J. Cell Biol. (1997) [Pubmed]
  33. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Lahat, H., Pras, E., Olender, T., Avidan, N., Ben-Asher, E., Man, O., Levy-Nissenbaum, E., Khoury, A., Lorber, A., Goldman, B., Lancet, D., Eldar, M. Am. J. Hum. Genet. (2001) [Pubmed]
  34. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Xu, K.Y., Huso, D.L., Dawson, T.M., Bredt, D.S., Becker, L.C. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  35. Exclusion of malignant hyperthermia susceptibility (MHS) from a putative MHS2 locus on chromosome 17q and of the alpha 1, beta 1, and gamma subunits of the dihydropyridine receptor calcium channel as candidates for the molecular defect. Sudbrak, R., Golla, A., Hogan, K., Powers, P., Gregg, R., Du Chesne, I., Lehmann-Horn, F., Deufel, T. Hum. Mol. Genet. (1993) [Pubmed]
  36. Molecular cloning and characterization of a Ca2+ + Mg2+-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. Regulation of its expression by pressure overload and developmental stage. Komuro, I., Kurabayashi, M., Shibazaki, Y., Takaku, F., Yazaki, Y. J. Clin. Invest. (1989) [Pubmed]
  37. Enhanced myocardial relaxation in vivo in transgenic mice overexpressing the beta2-adrenergic receptor is associated with reduced phospholamban protein. Rockman, H.A., Hamilton, R.A., Jones, L.R., Milano, C.A., Mao, L., Lefkowitz, R.J. J. Clin. Invest. (1996) [Pubmed]
  38. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. Haghighi, K., Kolokathis, F., Pater, L., Lynch, R.A., Asahi, M., Gramolini, A.O., Fan, G.C., Tsiapras, D., Hahn, H.S., Adamopoulos, S., Liggett, S.B., Dorn, G.W., MacLennan, D.H., Kremastinos, D.T., Kranias, E.G. J. Clin. Invest. (2003) [Pubmed]
  39. Calcium and magnesium contents and volume of the terminal cisternae in caffeine-treated skeletal muscle. Yoshioka, T., Somlyo, A.P. J. Cell Biol. (1984) [Pubmed]
 
WikiGenes - Universities