The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The Ost1p subunit of yeast oligosaccharyl transferase recognizes the peptide glycosylation site sequence, -Asn-X-Ser/Thr-.

Other laboratories have established that oligosaccharyl transferase (OST) from Saccharomyces cerevisiae can be purified as a protein complex containing eight different subunits. To identify the OST subunit that recognizes the peptide sites that can be glycosylated, we developed photoaffinity probes containing a photoreactive benzophenone derivative, p-benzoylphenylalanine (Bpa), as part of an 125I-labeled peptide that could be expected to be glycosylated. We found that Asn-Bpa-Thr peptides served as substrates for OST and that photoactivation of these probes in the presence of microsomes abolished the OST activity. Photoactivation of 125I-labeled Asn-Bpa-Thr in the presence of microsomes resulted in specific covalent labeling of a protein doublet of molecular mass 62 and 64 kDa. By carrying out the photoactivation of the probe using microsomes containing epitope-tagged Ost1p, we demonstrated that the 125I-labeled protein was Ost1p. Radiolabeling of this protein was dependent on irradiation at 350 nm. No labeling was detected using a probe containing Ala instead of Thr as the third amino acid residue. We conclude that Ost1p is the subunit of the OST complex that recognizes the peptide sites in the nascent chains that are destined to be glycosylated.[1]


WikiGenes - Universities