The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes.

Six-Carbon (C6-) volatiles, including the aldehydes trans-2-hexenal, hexanal and cis-3-hexenal, as well as their corresponding alcohols, are produced from damaged or wounded plant tissue as a product of the enzymatic activity of hydroperoxide lyase ( HPL), a component of the lipoxygenase ( LOX) pathway. Aerial treatment of Arabidopsis seedlings with 10 microM concentrations of trans-2-hexenal induces several genes known to be involved in the plant's defense response, including phenylpropanoid-related genes as well as genes of the LOX pathway. Genes encoding the pathogenesis-related proteins PR-1 or PR-2, however, were not induced. Trans-2-hexenal induction thus closely mimics the group of genes induced by methyl jasmonate (MeJA), also a LOX-derived volatile. However, unlike MeJA, trans-2-hexenal did not induce hydroxymethylglutaryl-coenzyme A reductase (HMGR) or thionin2-1. The inductive effect seemed to be limited to C6-related volatiles, as C8-, C9- and other related volatiles did not induce LOX mRNA levels. As has been demonstrated for MeJA, trans-2-hexenal quantitatively reduced wild-type seed germination. Trans-2-hexenal also reduced the germination frequency of the MeJA resistant Arabidopsis mutant, jar1-1, supporting the notion that trans-2-hexenal and MeJA are recognized via different mechanisms. In addition, trans-2-hexenal had a moderate inhibitory effect on root length relative to similar concentrations of MeJA and was approximately 10-fold less effective than MeJA at inducing anthocyanin accumulation in Arabidopsis seedlings. These results suggest that C6-volatiles of the LOX pathway act as a wound signal in plants, but result in a moderate plant response relative to MeJA at both the physiological and molecular level.[1]


WikiGenes - Universities