The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Requirement for the Drosophila COE transcription factor Collier in formation of an embryonic muscle: transcriptional response to notch signalling.

During Drosophila embryogenesis, mesodermal cells are recruited to form a stereotyped pattern of about 30 different larval muscles per hemisegment. The formation of this pattern is initiated by the specification of a special class of myoblasts, called founder cells, that are uniquely able to fuse with neighbouring myoblasts. We report here the role of the COE transcription factor Collier in the formation of a single muscle, muscle DA3([A])(DA4([T])). Col expression is first observed in two promuscular clusters (in segments A1-A7), the two corresponding progenitors and their progeny founder cells, but its transcription is maintained in only one of these four founder cells, the founder of muscle DA3([A]). This lineage-specific restriction depends on the asymmetric segregation of Numb during the progenitor cell division and involves the repression of col transcription by Notch signalling. In col mutant embryos, the DA3([A]) founder cells form but do not maintain col transcription and are unable to fuse with neighbouring myoblasts, leading to a loss-of-muscle DA3([A]) phenotype. In wild-type embryos, each of the DA3([A])-recruited myoblasts turns on col transcription, indicating that the conversion, by the DA3([A]) founder cell, of 'naive' myoblasts to express its distinctive pattern of gene expression involves activation of col itself. We find that muscles DA3([A]) and DO5([A]) (DA4([T]) and DO5([T])) derive from a common progenitor cell. Ectopic expression of Col is not sufficient, however, to switch the DO5([A]) to a DA3([A]) fate. Together these results lead us to propose that specification of the DA3([A]) muscle lineage requires both Col and at least one other transcription factor, supporting the hypothesis of a combinatorial code of muscle-specific gene regulation controlling the formation and diversification of individual somatic muscles.[1]

References

 
WikiGenes - Universities