Pore dilation of neuronal P2X receptor channels.
P2X receptors are ligand-gated ion channels activated by the binding of extracellular adenosine 5'-triphosphate (ATP). Brief (< 1 s) applications of ATP to nodose ganglion neurons or to cells transfected with P2X2 or P2X4 receptor cDNAs induce the opening of a channel selectively permeable to small cations within milliseconds. We now show that, during longer ATP application (10-60 s), the channel also becomes permeable to much larger cations such as N-methyl-D-glucamine and the propidium analog YO-PRO-1. This effect is enhanced in P2X2 receptors carrying point mutations in the second transmembrane segment. Progressive dilation of the ion-conducting pathway during prolonged activation reveals a mechanism by which ionotropic receptors may alter neuronal function.[1]References
- Pore dilation of neuronal P2X receptor channels. Virginio, C., MacKenzie, A., Rassendren, F.A., North, R.A., Surprenant, A. Nat. Neurosci. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg