Serum autoantibodies to brain in Landau-Kleffner variant, autism, and other neurologic disorders.
OBJECTIVE: Etiologically unexplained disorders of language and social development have often been reported to improve in patients treated with immune-modulating regimens. Here we determined the frequency of autoantibodies to brain among such children. DESIGN: We collected sera from a cohort of children with (1) pure Landau-Kleffner syndrome (n = 2), (2) Landau-Kleffner syndrome variant (LKSV, n = 11), and (3) autistic spectrum disorder ( ASD, n = 11). None had received immune-modulating treatment before the serum sample was obtained. Control sera (n = 71) were from 29 healthy children, 22 with non-neurologic illnesses (NNIs), and 20 children with other neurologic disorders (ONDs). We identified brain autoantibodies by immunostaining of human temporal cortex and antinuclear autoantibodies using commercially available kits. RESULTS: IgG anti-brain autoantibodies were present in 45% of sera from children with LKSV, 27% with ASD, and 10% with ONDs compared with 2% from healthy children and control children with NNIs. IgM autoantibodies were present in 36% of sera from children with ASD, 9% with LKSV, and 15% with ONDs compared with 0% of control sera. Labeling studies identified one antigenic target to be endothelial cells. Antinuclear antibodies with titers >/=1:80 were more common in children with ASD and control children with ONDs. CONCLUSION: Children with LKSV and ASD have a greater frequency of serum antibodies to brain endothelial cells and to nuclei than children with NNIs or healthy children. The presence of these antibodies raises the possibility that autoimmunity plays a role in the pathogenesis of language and social developmental abnormalities in a subset of children with these disorders.[1]References
- Serum autoantibodies to brain in Landau-Kleffner variant, autism, and other neurologic disorders. Connolly, A.M., Chez, M.G., Pestronk, A., Arnold, S.T., Mehta, S., Deuel, R.K. J. Pediatr. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg