Variable levels of normal RNA in different fetal organs carrying a cystic fibrosis transmembrane conductance regulator splicing mutation.
Disease severity varies among cystic fibrosis ( CF) patients carrying the same cystic fibrosis transmembrane conductance regulator (CFTR) genotype and among organs of the same individual. It has been shown that the class V splicing mutation 3849 + 10 kb C--> T produces both normal and aberrantly spliced CFTR transcripts. We analyzed the levels of normal CFTR messenger RNA (mRNA) in different organs of an aborted fetus carrying the 3849 + 10 kb C--> T mutation, and found that they correlated with the histopathologic changes observed in these organs. We performed semiquantitative nondifferential reverse transcription-polymerase chain reaction on several organs from a 22-wk aborted CF fetus carrying the 3849 + 10 kb C--> T mutation. A very low level (1%) of normal CFTR mRNA was detected in the severely affected ileum of this fetus. Higher levels were found in the histopathologically unaffected trachea (17%), colon (19%), and lung (26%). Thus, as early as in utero, the regulation of alternative splice-site selection is an important mechanism underlying variable CF severity. Understanding of the mechanisms regulating alternative splicing in different tissues will contribute to potential therapy for patients carrying splicing mutations in CF and other human disease genes.[1]References
- Variable levels of normal RNA in different fetal organs carrying a cystic fibrosis transmembrane conductance regulator splicing mutation. Chiba-Falek, O., Parad, R.B., Kerem, E., Kerem, B. Am. J. Respir. Crit. Care Med. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg